27 research outputs found
A murine herpesvirus closely related to ubiquitous human herpesviruses causes T-cell depletion
ABSTRACT
The human roseoloviruses human herpesvirus 6A (HHV-6A), HHV-6B, and HHV-7 comprise the
Roseolovirus
genus of the human
Betaherpesvirinae
subfamily. Infections with these viruses have been implicated in many diseases; however, it has been challenging to establish infections with roseoloviruses as direct drivers of pathology, because they are nearly ubiquitous and display species-specific tropism. Furthermore, controlled study of infection has been hampered by the lack of experimental models, and until now, a mouse roseolovirus has not been identified. Herein we describe a virus that causes severe thymic necrosis in neonatal mice, characterized by a loss of CD4
+
T cells. These phenotypes resemble those caused by the previously described mouse thymic virus (MTV), a putative herpesvirus that has not been molecularly characterized. By next-generation sequencing of infected tissue homogenates, we assembled a contiguous 174-kb genome sequence containing 128 unique predicted open reading frames (ORFs), many of which were most closely related to herpesvirus genes. Moreover, the structure of the virus genome and phylogenetic analysis of multiple genes strongly suggested that this virus is a betaherpesvirus more closely related to the roseoloviruses, HHV-6A, HHV-6B, and HHV-7, than to another murine betaherpesvirus, mouse cytomegalovirus (MCMV). As such, we have named this virus murine roseolovirus (MRV) because these data strongly suggest that MRV is a mouse homolog of HHV-6A, HHV-6B, and HHV-7.
IMPORTANCE
Herein we describe the complete genome sequence of a novel murine herpesvirus. By sequence and phylogenetic analyses, we show that it is a betaherpesvirus most closely related to the roseoloviruses, human herpesviruses 6A, 6B, and 7. These data combined with physiological similarities with human roseoloviruses collectively suggest that this virus is a murine roseolovirus (MRV), the first definitively described rodent roseolovirus, to our knowledge. Many biological and clinical ramifications of roseolovirus infection in humans have been hypothesized, but studies showing definitive causative relationships between infection and disease susceptibility are lacking. Here we show that MRV infects the thymus and causes T-cell depletion, suggesting that other roseoloviruses may have similar properties.
</jats:p
The complete inventory of receptors encoded by the rat natural killer cell gene complex
The natural killer cell gene complex (NKC) encodes receptors belonging to the C-type lectin superfamily expressed primarily by NK cells and other leukocytes. In the rat, the chromosomal region that starts with the Nkrp1a locus and ends with the Ly49i8 locus is predicted to contain 67 group V C-type lectin superfamily genes, making it one of the largest congregation of paralogous genes in vertebrates. Based on physical proximity and phylogenetic relationships between these genes, the rat NKC can be divided into four major parts. We have previously reported the cDNA cloning of the majority of the genes belonging to the centromeric Nkrp1/Clr cluster and the two telomeric groups, the Klre1–Klri2 and the Ly49 clusters. Here, we close the gap between the Nkrp1/Clr and the Klre1–Klri2 clusters by presenting the cDNA cloning and transcription patterns of eight genes spanning from Cd69 to Dectin1, including the novel Clec2m gene. The definition, organization, and evolution of the rat NKC are discussed
Cutting Edge: Local Proliferation of Uterine Tissue-Resident NK Cells during Decidualization in Mice
Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells
Crosslinking of immunoreceptor tyrosine-based activation motif (ITAM)-containing receptor complexes on a variety of cells leads to their activation through the sequential triggering of protein tyrosine kinases. Recently, DAP12 has been identified as an ITAM-bearing signaling molecule that is noncovalently associated with activating isoforms of MHC class I receptors on natural killer cells. In addition to natural killer cells, DAP12 is expressed in peripheral blood monocytes, macrophages, and dendritic cells, suggesting association with other receptors present in these cell types. In the present study, we report the molecular cloning of the myeloid DAP12-associating lectin-1 (MDL-1), a DAP12-associating membrane receptor expressed exclusively in monocytes and macrophages. MDL-1 is a type II transmembrane protein belonging to the C type lectin superfamily and contains a charged residue in the transmembrane region that enables it to pair with DAP12. Crosslinking of MDL-1/DAP12 complexes in J774 mouse macrophage cells resulted in calcium mobilization. These findings suggest that signaling via MDL-1/DAP12 complexes may constitute a significant activation pathway in myeloid cells.Baker, Elizabeth; Sutherland, Grant R.; Phillips, Joseph H.; Lanier, Lewis L