2,020 research outputs found
The Effects of Clumping and Substructure on ICM Mass Measurements
We examine an ensemble of 48 simulated clusters to determine the effects of
small-scale density fluctuations and large-scale substructure on X-ray
measurements of the intracluster medium (ICM) mass. We measure RMS density
fluctuations in the ICM which can be characterized by a mean mass-weighted
clumping factor C = /^2 between 1.3 and 1.4 within a density
contrast of 500 times the critical density. These fluctuations arise from the
cluster history of accretion shocks and major mergers, and their presence
enhances the cluster's luminosity relative to the smooth case. We expect,
therefore, that ICM mass measurements utilizing models which assume uniform
density at a given radius carry a bias of order sqrt(C) = 1.16. We verify this
result by performing ICM mass measurements on X-ray images of the simulations
and finding the expected level of bias.
The varied cluster morphologies in our ensemble also allow us to investigate
the effects of departures from spherical symmetry on our measurements. We find
that the presence of large-scale substructure does not further bias the
resulting gas mass unless it is pronounced enough to produce a second peak in
the image of at least 1% the maximum surface brightness. We analyze the subset
of images with no secondary peaks and find a bias of 9% and a Gaussian random
error of 4% in the derived mass.Comment: To appear in ApJ
Heavy oil production with energy effective steam-assisted gravity drainage
In reservoirs with extra heavy oil and bitumen, thermal methods are used to reduce the viscosity, in order to extract the oil. Steam-assisted gravity drainage (SAGD) is a thermal method where continuous steam injection is used. In this method, two horizontal wells are placed in parallel. The upper well injects steam and the lower well produces oil and condensed water. The continuous steam injection creates a chamber with uniform temperature. Heavy oil and bitumen reserves in Western Canada, which exceed 175 billion barrels, are becoming increasingly important petroleum sources due to the technical success of the SAGD processes. This study includes Computational fluid dynamics (CFD) modelling and simulations of a horizontal oil well with SAGD. The simulations are performed with inflow control devices (ICD) and autonomous inflow control valves (AICV) completion. In the SAGD processes, it is important that the residence time for steam in the reservoir is high enough to ensure that all the injected steam condenses in the reservoir to reduce the amount of steam injection and thereby making the SAGD process more energy effective. The simulations are carried out with ICD completion to delay the steam breakthrough and with AICV completion to prevent breakthrough of steam and water to the well. The numerical results showed that a most of the steam was produced together with the oil when ICD completion was used. AICV was able to close for steam and water, and the steam was thereby forced to condense in the reservoir, resulting in better utilization of the condensation energy
Caging Mechanism for a drag-free satellite position sensor
A disturbance compensation system for satellites based on the drag-free concept was mechanized and flown, using a spherical proof mass and a cam-guided caging mechanism. The caging mechanism controls the location of the proof mass for testing and constrains it during launch. Design requirements, design details, and hardware are described
Branching Instabilities in Rapid Fracture: Dynamics and Geometry
We propose a theoretical model for branching instabilities in 2-dimensional
fracture, offering predictions for when crack branching occurs, how multiple
cracks develop, and what is the geometry of multiple branches. The model is
based on equations of motion for crack tips which depend only on the time
dependent stress intensity factors. The latter are obtained by invoking an
approximate relation between static and dynamic stress intensity factors,
together with an essentially exact calculation of the static ones. The results
of this model are in good agreement with a sizeable quantity of experimental
data.Comment: 9 pages, 11 figure
Roughening of Fracture Surfaces: the Role of Plastic Deformations
Post mortem analysis of fracture surfaces of ductile and brittle materials on
the m-mm and the nm scales respectively, reveal self affine graphs with an
anomalous scaling exponent . Attempts to use elasticity
theory to explain this result failed, yielding exponent up
to logarithms. We show that when the cracks propagate via plastic void
formations in front of the tip, followed by void coalescence, the voids
positions are positively correlated to yield exponents higher than 0.5.Comment: 4 pages, 6 figure
The thermodynamics and roughening of solid-solid interfaces
The dynamics of sharp interfaces separating two non-hydrostatically stressed
solids is analyzed using the idea that the rate of mass transport across the
interface is proportional to the thermodynamic potential difference across the
interface. The solids are allowed to exchange mass by transforming one solid
into the other, thermodynamic relations for the transformation of a mass
element are derived and a linear stability analysis of the interface is carried
out. The stability is shown to depend on the order of the phase transition
occurring at the interface. Numerical simulations are performed in the
non-linear regime to investigate the evolution and roughening of the interface.
It is shown that even small contrasts in the referential densities of the
solids may lead to the formation of finger like structures aligned with the
principal direction of the far field stress.Comment: (24 pages, 8 figures; V2: added figures, text revisions
Four Measures of the Intracluster Medium Temperature and Their Relation to a Cluster's Dynamical State
We employ an ensemble of hydrodynamic cluster simulations to create spatially
and spectrally resolved images of quality comparable to Chandra's expected
performance. Emission from simulation mass elements is represented using the
XSPEC mekal program assuming 0.3 solar metallicity, and the resulting spectra
are fit with a single-temperature model. Despite significant departures from
isothermality in the cluster gas, single-temperature models produce acceptable
fits to 20,000 source photon spectra. The spectral fit temperature T_s is
generally lower than the mass weighted average temperature T_m due to the
influence of soft line emission from cooler gas being accreted as part of the
hierarchical clustering process. In a Chandra-like bandpass of 0.5 to 9.5 keV
we find a nearly uniform fractional bias of (T_m-T_s)/T_s = 20% with occasional
large deviations in smaller clusters. In the more traditional 2.0 to 9.5 keV
bandpass, the fractional deviation is scale-dependent and on average follows
the relation (T_m-T_s)/T_s = 0.2 log(T_m). This bias results in a spectral
mass-temperature relationship with slope about 1.6, intermediate between the
virial relation M ~ T_m^{3/2} and the observed relation M_{ICM} ~ T^2. Imaging
each cluster in the ensemble at 16 epochs in its evolutionary history, we
catalogue merger events with mass ratios exceeding 10% in order to investigate
the relationship between spectral temperature and proximity to a major merger
event. Clusters that are very cool relative to the mean mass-temperature
relationship lie preferentially close to a merger, suggesting a viable
observational method to cull a subset of dynamically young clusters from the
general population.Comment: 34 pages, including 2 tables and 14 figures (one in color). Compiled
using LaTeX 2.09 with graphics package and aaspp4 style. The simulated
spectral data files used in this paper are available for public consumption
at http://redshift.stanford.edu/bfm
Tip Splittings and Phase Transitions in the Dielectric Breakdown Model: Mapping to the DLA Model
We show that the fractal growth described by the dielectric breakdown model
exhibits a phase transition in the multifractal spectrum of the growth measure.
The transition takes place because the tip-splitting of branches forms a fixed
angle. This angle is eta dependent but it can be rescaled onto an
``effectively'' universal angle of the DLA branching process. We derive an
analytic rescaling relation which is in agreement with numerical simulations.
The dimension of the clusters decreases linearly with the angle and the growth
becomes non-fractal at an angle close to 74 degrees (which corresponds to eta=
4.0 +- 0.3).Comment: 4 pages, REVTex, 3 figure
Diffusion, Fragmentation and Coagulation Processes: Analytical and Numerical Results
We formulate dynamical rate equations for physical processes driven by a
combination of diffusive growth, size fragmentation and fragment coagulation.
Initially, we consider processes where coagulation is absent. In this case we
solve the rate equation exactly leading to size distributions of Bessel type
which fall off as for large -values. Moreover, we provide
explicit formulas for the expansion coefficients in terms of Airy functions.
Introducing the coagulation term, the full non-linear model is mapped exactly
onto a Riccati equation that enables us to derive various asymptotic solutions
for the distribution function. In particular, we find a standard exponential
decay, , for large , and observe a crossover from the Bessel
function for intermediate values of . These findings are checked by
numerical simulations and we find perfect agreement between the theoretical
predictions and numerical results.Comment: (28 pages, 6 figures, v2+v3 minor corrections
- …
