23 research outputs found

    Исследование датчиков рН и удельной электрической проводимости фирмы WTW в системе автоматизированного контроля качества очистки сточных вод

    Get PDF
    We demonstrate the suitability of microcavities based on circular grating resonators (CGRs) as fast switches. This type of optical resonator is characterized by a high quality factor and very small mode volume. The waveguide-coupled CGRs are fabricated with silicon-on-insulator technology compatible with standard complementary metal-oxide semiconductor (CMOS) processing. The linear optical properties of the CGRs are investigated by transmission spectroscopy. From 3D finite-difference time-domain simulations of isolated CGRs, we identify the measured resonances. We probe the spatial distribution and the parasitic losses of a resonant optical mode with scanning near-field optical microscopy. We observe fast all-optical switching within a few picoseconds by optically generating free charge carriers within the cavity. (C) 2009 Optical Society of Americ

    A fast and comprehensive microdisc laser model applied to all-optical wavelength conversion

    Get PDF
    Abstract: Microdisc lasers (MDLs) are an attractive option for on-chip laser sources, wavelength converters and even all-optical optical memory. We have developed a comprehensive model for the wavelength conversion in MDLs, which is compared with measurements

    Brain-inspired nanophotonic spike computing:challenges and prospects

    Get PDF
    Nanophotonic spiking neural networks (SNNs) based on neuron-like excitable subwavelength (submicrometre) devices are of key importance for realizing brain-inspired, power-efficient artificial intelligence (AI) systems with high degree of parallelism and energy efficiency. Despite significant advances in neuromorphic photonics, compact and efficient nanophotonic elements for spiking signal emission and detection, as required for spike-based computation, remain largely unexplored. In this invited perspective, we outline the main challenges, early achievements, and opportunities toward a key-enabling photonic neuro-architecture using III-V/Si integrated spiking nodes based on nanoscale resonant tunnelling diodes (nanoRTDs) with folded negative differential resistance. We utilize nanoRTDs as nonlinear artificial neurons capable of spiking at high-speeds. We discuss the prospects for monolithic integration of nanoRTDs with nanoscale light-emitting diodes and nanolaser diodes, and nanophotodetectors to realize neuron emitter and receiver spiking nodes, respectively. Such layout would have a small footprint, fast operation, and low power consumption, all key requirements for efficient nano-optoelectronic spiking operation. We discuss how silicon photonics interconnects, integrated photorefractive interconnects, and 3D waveguide polymeric interconnections can be used for interconnecting the emitter-receiver spiking photonic neural nodes. Finally, using numerical simulations of artificial neuron models, we present spike-based spatio-temporal learning methods for applications in relevant AI-based functional tasks, such as image pattern recognition, edge detection, and SNNs for inference and learning. Future developments in neuromorphic spiking photonic nanocircuits, as outlined here, will significantly boost the processing and transmission capabilities of next-generation nanophotonic spike-based neuromorphic architectures for energy-efficient AI applications. This perspective paper is a result of the European Union funded research project ChipAI in the frame of the Horizon 2020 Future and Emerging Technologies Open programme.</p

    Co-Package Technology Platform for Low-Power and Low-Cost Data Centers

    Get PDF
    We report recent advances in photonic–electronic integration developed in the European research project L3MATRIX. The aim of the project was to demonstrate the basic building blocks of a co-packaged optical system. Two-dimensional silicon photonics arrays with 64 modulators were fabricated. Novel modulation schemes based on slow light modulation were developed to assist in achieving an efficient performance of the module. Integration of DFB laser sources within each cell in the matrix was demonstrated as well using wafer bonding between the InP and SOI wafers. Improved semiconductor quantum dot MBE growth, characterization and gain stack designs were developed. Packaging of these 2D photonic arrays in a chiplet configuration was demonstrated using a vertical integration approach in which the optical interconnect matrix was flip-chip assembled on top of a CMOS mimic chip with 2D vertical fiber coupling. The optical chiplet was further assembled on a substrate to facilitate integration with the multi-chip module of the co-packaged system with a switch surrounded by several such optical chiplets. We summarize the features of the L3MATRIX co-package technology platform and its holistic toolbox of technologies to address the next generation of computing challenges

    Compact InP-on-SOI microdisks used as high-speed modulators and photo detectors

    No full text
    We demonstrate for the first time that a single compact, electrically driven indium phosphide based microdisk heterogeneously integrated on a silicon-on-insulator waveguide can be used as both a high-speed modulator and photo detector. We demonstrate high-speed operation up to 10 Gb/s and present bit-error rate results of both operation modes

    Compact InP-on-SOI microdisks used as high-speed modulators and photo detectors

    No full text
    We demonstrate for the first time that a single compact, electrically driven indium phosphide based microdisk heterogeneously integrated on a silicon-on-insulator waveguide can be used as both a high-speed modulator and photo detector. We demonstrate high-speed operation up to 10 Gb/s and present bit-error rate results of both operation modes.</p

    Polymer-based optical interconnects using nanoimprint lithography

    No full text
    The increasing request for higher data speeds in the information and communication technology leads to continuously increasing performance of microprocessors. This has led to the introduction of optical data transmission as a replacement of electronic data transmission in most transmission applications longer than 10 meters. However, a need remains for optical data transmission for shorter distances inside the computer. This paper gives an overview of the Joint European project FIREFLY, in which new polymer based single mode waveguides are developed for integration with VCSELs, splitters and fibers that will be manufactured using multi-layer nanoimprint lithography (NIL). Innovative polymers, new applications of nano-technology, new methods for optical coupling between components, and the integration of all these new components are the technical ingredients of this ambitious project. New polymers: developments in siloxane based polymers will be discussed to reduce the optical loss at datacom and telecom wavelengths. These new polymers can already be processed using processes such as direct laser writing. New production processes: the implementation of the new polymers in multi-layer NIL will be assessed. The polymer cladding and core is structured at micrometer scale to create dense networks of single mode waveguides. The NIL process is a suitable technique for mass production. Integration: new concepts will be presented that will optimize the coupling of the components and reduce the optical losses that arise in coupling the lasers to waveguides, waveguides to fibres, and in 45° or 90° bends
    corecore