37,639 research outputs found

    Integrable Quasiclassical Deformations of Algebraic Curves

    Get PDF
    A general scheme for determining and studying integrable deformations of algebraic curves is presented. The method is illustrated with the analysis of the hyperelliptic case. An associated multi-Hamiltonian hierarchy of systems of hydrodynamic type is characterized.Comment: 28 pages, no figure

    Nonlinear Dynamics on the Plane and Integrable Hierarchies of Infinitesimal Deformations

    Get PDF
    A class of nonlinear problems on the plane, described by nonlinear inhomogeneous ˉ\bar{\partial}-equations, is considered. It is shown that the corresponding dynamics, generated by deformations of inhomogeneous terms (sources) is described by Hamilton-Jacobi type equations associated with hierarchies of dispersionless integrable systems. These hierarchies are constructed by applying the quasiclassical ˉ\bar{\partial}-dressing method.Comment: 30 pages, tcilate

    Hydrodynamic reductions and solutions of a universal hierarchy

    Get PDF
    The diagonal hydrodynamic reductions of a hierarchy of integrable hydrodynamic chains are explicitly characterized. Their compatibility with previously introduced reductions of differential type is analyzed and their associated class of hodograph solutions is discussed.Comment: 19 page

    dbar-approach to the dispersionless KP hierarchy

    Full text link
    The dispersionless limit of the scalar nonlocal dbar-problem is derived. It is given by a special class of nonlinear first-order equations. A quasi-classical version of the dbar-dressing method is presented. It is shown that the algebraic formulation of dispersionless hierarchies can be expressed in terms of properties of Beltrami tupe equations. The universal Whitham hierarchy and, in particular, the dispersionless KP hierarchy turn out to be rings of symmetries for the quasi-classical dbar-problem.Comment: 13 pages, LaTex 24.9K

    On the Potential of Leptonic Minimal Flavour Violation

    Full text link
    Minimal Flavour Violation can be realized in several ways in the lepton sector due to the possibility of Majorana neutrino mass terms. We derive the scalar potential for the fields whose background values are the Yukawa couplings, for the simplest See-Saw model with just two right-handed neutrinos, and explore its minima. The Majorana character plays a distinctive role: the minimum of the potential allows for large mixing angles -in contrast to the simplest quark case- and predicts a maximal Majorana phase. This points in turn to a strong correlation between neutrino mass hierarchy and mixing pattern.Comment: 6 pages; version published on Physics Letters

    Quantum control of the motional states of trapped ions through fast switching of trapping potentials

    Full text link
    We propose a new scheme for supplying voltages to the electrodes of microfabricated ion traps, enabling access to a regime in which changes to the trapping potential are made on timescales much shorter than the period of the secular oscillation frequencies of the trapped ions. This opens up possibilities for speeding up the transport of ions in segmented ion traps and also provides access to control of multiple ions in a string faster than the Coulomb interaction between them. We perform a theoretical study of ion transport using these methods in a surface-electrode trap, characterizing the precision required for a number of important control parameters. We also consider the possibilities and limitations for generating motional state squeezing using these techniques, which could be used as a basis for investigations of Gaussian-state entanglement.Comment: Accepted by New Journal of Physic
    corecore