31 research outputs found

    Reliability of Rapid Diagnostic Tests in Diagnosing Pregnancy-Associated Malaria in North-Eastern Tanzania.

    Get PDF
    Accurate diagnosis and prompt treatment of pregnancy-associated malaria (PAM) are key aspects in averting adverse pregnancy outcomes. Microscopy is the gold standard in malaria diagnosis, but it has limited detection and availability. When used appropriately, rapid diagnostic tests (RDTs) could be an ideal diagnostic complement to microscopy, due to their ease of use and adequate sensitivity in detecting even sub-microscopic infections. Polymerase chain reaction (PCR) is even more sensitive, but it is mainly used for research purposes. The accuracy and reliability of RDTs in diagnosing PAM was evaluated using microscopy and PCR. A cohort of pregnant women in north-eastern Tanzania was followed throughout pregnancy for detection of plasmodial infection using venous and placental blood samples evaluated by histidine rich protein 2 (HRP-2) and parasite lactate dehydrogenase (pLDH) based RDTs (Parascreenℱ) or HRP-2 only (Paracheck Pf¼ and ParaHIT¼f), microscopy and nested Plasmodium species diagnostic PCR. From a cohort of 924 pregnant women who completed the follow up, complete RDT and microscopy data was available for 5,555 blood samples and of these 442 samples were analysed by PCR. Of the 5,555 blood samples, 49 ((proportion and 95% confidence interval) 0.9% [0.7 -1.1]) samples were positive by microscopy and 91 (1.6% [1.3-2.0]) by RDT. Forty-six (50.5% [40.5 - 60.6]) and 45 (49.5% [39.4 - 59.5]) of the RDT positive samples were positive and negative by microscopy, respectively, whereas nineteen (42.2% [29.0 - 56.7]) of the microscopy negative, but RDT positive, samples were positive by PCR. Three (0.05% [0.02 - 0.2]) samples were positive by microscopy but negative by RDT. 351 of the 5,461 samples negative by both RDT and microscopy were tested by PCR and found negative. There was no statistically significant difference between the performances of the different RDTs. Microscopy underestimated the real burden of malaria during pregnancy and RDTs performed better than microscopy in diagnosing PAM. In areas where intermittent preventive treatment during pregnancy may be abandoned due to low and decreasing malaria risk and instead replaced with active case management, screening with RDT is likely to identify most infections in pregnant women and out-performs microscopy as a diagnostic tool

    Prevention of Neural-Tube Defects with Periconceptional Folic Acid, Methylfolate, or Multivitamins?

    Get PDF
    Background/Aims: To review the main results of intervention trials which showed the efficacy of periconceptional folic acid-containing multivitamin and folic acid supplementation in the prevention of neural-tube defects (NTD). Methods and Results: The main findings of 5 intervention trials are known: (i) the efficacy of a multivitamin containing 0.36 mg folic acid in a UK nonrandomized controlled trial resulted in an 83-91% reduction in NTD recurrence, while the results of the Hungarian (ii) randomized controlled trial and (iii) cohort-controlled trial using a multivitamin containing 0.8 mg folic acid showed 93 and 89% reductions in the first occurrence of NTD, respectively. On the other hand, (iv) another multicenter randomized controlled trial proved a 71% efficacy of 4 mg folic acid in the reduction of recurrent NTD, while (v) a public health-oriented Chinese-US trial showed a 41-79% reduction in the first occurrence of NTD depending on the incidence of NTD. Conclusions: Translational application of these findings could result in a breakthrough in the primary prevention of NTD, but so far this is not widely applied in practice. The benefits and drawbacks of 4 main possible uses of periconceptional folic acid/multivitamin supplementation, i.e. (i) dietary intake, (ii) periconceptional supplementation, (iii) flour fortification, and (iv) the recent attempt for the use of combination of oral contraceptives with 6S-5-methytetrahydrofolate (methylfolate), are discussed. Obviously, prevention of NTD is much better than the frequent elective termination of pregnancies after prenatal diagnosis of NTD fetuses

    Biomechanics and the thermotolerance of development

    Get PDF
    Successful completion of development requires coordination of patterning events with morphogenetic movements. Environmental variability challenges this coordination. For example, developing organisms encounter varying environmental temperatures that can strongly influence developmental rates. We hypothesized that the mechanics of morphogenesis would have to be finely adjusted to allow for normal morphogenesis across a wide range of developmental rates. We formulated our hypothesis as a simple model incorporating time-dependent application of force to a viscoelastic tissue. This model suggested that the capacity to maintain normal morphogenesis across a range of temperatures would depend on how both tissue viscoelasticity and the forces that drive deformation vary with temperature. To test this model we investigated how the mechanical behavior of embryonic tissue (Xenopus laevis) changed with temperature; we used a combination of micropipette aspiration to measure viscoelasticity, electrically induced contractions to measure cellular force generation, and confocal microscopy to measure endogenous contractility. Contrary to expectations, the viscoelasticity of the tissues and peak contractile tension proved invariant with temperature even as rates of force generation and gastrulation movements varied three-fold. Furthermore, the relative rates of different gastrulation movements varied with temperature: the speed of blastopore closure increased more slowly with temperature than the speed of the dorsal-to-ventral progression of involution. The changes in the relative rates of different tissue movements can be explained by the viscoelastic deformation model given observed viscoelastic properties, but only if morphogenetic forces increase slowly rather than all at once. © 2014 von Dassow et al

    Altered ureteric branching morphogenesis and nephron endowment in offspring of diabetic and insulin-treated pregnancy

    Get PDF
    <div><p>There is strong evidence from human and animal models that exposure to maternal hyperglycemia during <i>in utero</i> development can detrimentally affect fetal kidney development. Notwithstanding this knowledge, the precise effects of diabetic pregnancy on the key processes of kidney development are unclear due to a paucity of studies and limitations in previously used methodologies. The purpose of the present study was to elucidate the effects of hyperglycemia on ureteric branching morphogenesis and nephrogenesis using unbiased techniques. Diabetes was induced in pregnant C57Bl/6J mice using multiple doses of streptozotocin (STZ) on embryonic days (E) 6.5-8.5. Branching morphogenesis was quantified <i>ex vivo</i> using Optical Projection Tomography, and nephrons were counted using unbiased stereology. Maternal hyperglycemia was recognised from E12.5. At E14.5, offspring of diabetic mice demonstrated fetal growth restriction and a marked deficit in ureteric tip number (control 283.7±23.3 vs. STZ 153.2±24.6, mean±SEM, <i>p</i>&lt;0.01) and ureteric tree length (control 33.1±2.6 mm vs. STZ 17.6±2.7 mm, <i>p</i> = 0.001) vs. controls. At E18.5, fetal growth restriction was still present in offspring of STZ dams and a deficit in nephron endowment was observed (control 1246.2±64.9 vs. STZ 822.4±74.0, <i>p&lt;</i>0.001). Kidney malformations in the form of duplex ureter and hydroureter were a common observation (26%) in embryos of diabetic pregnancy compared with controls (0%). Maternal insulin treatment from E13.5 normalised maternal glycaemia but did not normalise fetal weight nor prevent the nephron deficit. The detrimental effect of hyperglycemia on ureteric branching morphogenesis and, in turn, nephron endowment in the growth-restricted fetus highlights the importance of glycemic control in early gestation and during the initial stages of renal development.</p> </div

    Az anotiĂĄt Ă©s microtiĂĄt kĂ­sĂ©rƑ többszörös fejlƑdĂ©si rendellenessĂ©gek eloszlĂĄsa [Distribution of multiple congenital abnormalities including anotia and microtia]

    Get PDF
    To evaluate cases with unclassified multiple congenital abnormalities including microtia and anotia as component congenital abnormalities in order to reveal the characteristic pattern of other associated component congenital abnormalities and to make an attempt to establish a registry diagnosis on the pattern of associated congenital abnormalities and to stimulate the establishment of an international registry of cases with unclassified multiple congenital abnormalities comprising of microtia and anotia. METHODS: The large population-based dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities, 1980-1996. RESULTS: A total of 156 cases with unclassified multiple congenital abnormalities including microtia and anotia were analyzed according to the number of 2-9 component congenital abnormalities. The comparison of the distribution and frequency of component congenital abnormalities in these cases showed significant differences from the data of other unclassified multiple congenital abnormalities. Of the 156 cases, registry diagnosis was possible in 48 (30.8%) cases. CONCLUSIONS: The evaluation of available dataset of unclassified multiple anotia and microtia may help the delineation of new syndromes and associations with better prognosis and recurrence risk estimation, thus finally a better chance for their prevention

    The anthocyanin content of blue and purple coloured wheat cultivars and their hybrid generations

    No full text
    The anthocyanin content of spring and winter wheat cultivars and their hybrids with purple and blue coloured grains was evaluated under Hungarian growing conditions. In all 3 years the anthocyanin content of blue grained wheats was significantly higher than that of purple ones. Anthocyanin content was influenced by environmental factors. In the progenies of crosses between Hungarian hard red winter wheat cultivars and blue-grained varieties, the anthocyanin content of the grind was 21–157 mg/kg, while that of the flour was 5.3–17.4 mg/kg. Consequently, most of the anthocyanin content was in the bran. The high anthocyanin content of blue and purple wheat varieties can be applied successfully for elevating the anthocyanin content of bakery products if whole-meal flour or bran is used
    corecore