109 research outputs found

    Cosmic dust or other similar outer-space particles location detector

    Get PDF
    Cosmic dust may be serious radiation hazard to man and electronic equipment caught in its path. Dust detector uses two operational amplifiers and offers narrower areas for collection of cosmic dust. Detector provides excellent resolution as result of which recording of particle velocities as well as positions of their impact are more accurately determined

    Two high resolution velocity vector analyzers for cosmic dust particles

    Get PDF
    Methods are described to measure velocities and angles of incidence of charged cosmic dust particles with precisions of about 1 percent and 1 degree, respectively. Both methods employ four one-dimensional position-sensitive detectors in series. The first method utilizes a charge-dividing technique while the second utilizes a time-of-flight technique for determining the position of a particle inside the instrument. The velocity vectors are measured although mechanical interaction between the particle and the instrument is completely avoided. Applications to cosmic dust composition and collection experiments are discussed. The range of radii of measurable particles is from about 0.01 to 100 microns at velocities from 1 to 80 km/s

    Increasing Neff with particles in thermal equilibrium with neutrinos

    Full text link
    Recent work on increasing the effective number of neutrino species (Neff) in the early universe has focussed on introducing extra relativistic species (`dark radiation'). We draw attention to another possibility: a new particle of mass less than 10 MeV that remains in thermal equilibrium with neutrinos until it becomes non-relativistic increases the neutrino temperature relative to the photons. We demonstrate that this leads to a value of Neff that is greater than three and that Neff at CMB formation is larger than at BBN. We investigate the constraints on such particles from the primordial abundance of helium and deuterium created during BBN and from the CMB power spectrum measured by ACT and SPT and find that they are presently relatively unconstrained. We forecast the sensitivity of the Planck satellite to this scenario: in addition to dramatically improving constraints on the particle mass, in some regions of parameter space it can discriminate between the new particle being a real or complex scalar.Comment: 10 pages, 5 figures v2 matches version to appear in JCA

    Cosmological bounds on sub-MeV mass axions

    Full text link
    Axions with mass greater than 0.7 eV are excluded by cosmological precision data because they provide too much hot dark matter. While for masses above 20 eV the axion lifetime drops below the age of the universe, we show that the cosmological exclusion range can be extended from 0.7 eV till 300 keV, primarily by the cosmic deuterium abundance: axion decays would strongly modify the baryon-to-photon ratio at BBN relative to the one at CMB decoupling. Additional arguments include neutrino dilution relative to photons by axion decays and spectral CMB distortions. Our new cosmological constraints complement stellar-evolution limits and laboratory bounds.Comment: 19 pages, 10 figure

    Mapping systematic errors in helium abundance determinations using Markov Chain Monte Carlo

    Full text link
    Monte Carlo techniques have been used to evaluate the statistical and systematic uncertainties in the helium abundances derived from extragalactic H~II regions. The helium abundance is sensitive to several physical parameters associated with the H~II region. In this work, we introduce Markov Chain Monte Carlo (MCMC) methods to efficiently explore the parameter space and determine the helium abundance, the physical parameters, and the uncertainties derived from observations of metal poor nebulae. Experiments with synthetic data show that the MCMC method is superior to previous implementations (based on flux perturbation) in that it is not affected by biases due to non-physical parameter space. The MCMC analysis allows a detailed exploration of degeneracies, and, in particular, a false minimum that occurs at large values of optical depth in the He~I emission lines. We demonstrate that introducing the electron temperature derived from the [O~III] emission lines as a prior, in a very conservative manner, produces negligible bias and effectively eliminates the false minima occurring at large optical depth. We perform a frequentist analysis on data from several "high quality" systems. Likelihood plots illustrate degeneracies, asymmetries, and limits of the determination. In agreement with previous work, we find relatively large systematic errors, limiting the precision of the primordial helium abundance for currently available spectra.Comment: 25 pages, 11 figure

    Searching for sterile neutrinos in ice

    Full text link
    Oscillation interpretation of the results from the LSND, MiniBooNE and some other experiments requires existence of sterile neutrino with mass 1\sim 1 eV and mixing with the active neutrinos Uμ02(0.020.04)|U_{\mu 0}|^2 \sim (0.02 - 0.04). It has been realized some time ago that existence of such a neutrino affects significantly the fluxes of atmospheric neutrinos in the TeV range which can be tested by the IceCube Neutrino Observatory. In view of the first IceCube data release we have revisited the oscillations of high energy atmospheric neutrinos in the presence of one sterile neutrino. Properties of the oscillation probabilities are studied in details for various mixing schemes both analytically and numerically. The energy spectra and angular distributions of the νμ\nu_\mu-events have been computed for the simplest νs\nu_s-mass, and νsνμ\nu_s - \nu_\mu mixing schemes and confronted with the IceCube data. An illustrative statistical analysis of the present data shows that in the νs\nu_s-mass mixing case the sterile neutrinos with parameters required by LSND/MiniBooNE can be excluded at about 3σ3\sigma level. The νsνμ\nu_s- \nu_\mu mixing scheme, however, can not be ruled out with currently available IceCube data.Comment: 41 pages, 16 figures. Accepted for publication in JHEP. Minor changes from the previous versio

    Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows

    Full text link
    Motivated by recent hints for sterile neutrinos from the reactor anomaly, we study active-sterile conversions in a three-flavor scenario (2 active + 1 sterile families) for three different representative times during the neutrino-cooling evolution of the proto-neutron star born in an electron-capture supernova. In our "early model" (0.5 s post bounce), the nu_e-nu_s MSW effect driven by Delta m^2=2.35 eV^2 is dominated by ordinary matter and leads to a complete nu_e-nu_s swap with little or no trace of collective flavor oscillations. In our "intermediate" (2.9 s p.b.) and "late models" (6.5 s p.b.), neutrinos themselves significantly modify the nu_e-nu_s matter effect, and, in particular in the late model, nu-nu refraction strongly reduces the matter effect, largely suppressing the overall nu_e-nu_s MSW conversion. This phenomenon has not been reported in previous studies of active-sterile supernova neutrino oscillations. We always include the feedback effect on the electron fraction Y_e due to neutrino oscillations. In all examples, Y_e is reduced and therefore the presence of sterile neutrinos can affect the conditions for heavy-element formation in the supernova ejecta, even if probably not enabling the r-process in the investigated outflows of an electron-capture supernova. The impact of neutrino-neutrino refraction is strong but complicated, leaving open the possibility that with a more complete treatment, or for other supernova models, active-sterile neutrino oscillations could generate conditions suitable for the r-process.Comment: 23 pages, including 14 figures and 2 tables (minor changes in the text). Matches published version in JCA

    Primordial Nucleosynthesis

    Full text link
    Primordial nucleosynthesis, or Big-Bang Nucleosynthesis (BBN), is one of the three evidences for the Big-Bang model, together with the expansion of the Universe and the Cosmic Microwave Background. There is a good global agreement over a range of nine orders of magnitude between abundances of 4He, D, 3He and 7Li deduced from observations, and calculated in primordial nucleosynthesis. This comparison was used to determine the baryonic density of the Universe. For this purpose, it is now superseded by the analysis of the Cosmic Microwave Background (CMB) radiation anisotropies. However, there remain, a yet unexplained, discrepancy of a factor 3-5, between the calculated and observed lithium primordial abundances, that has not been reduced, neither by recent nuclear physics experiments, nor by new observations. We review here the nuclear physics aspects of BBN for the production of 4He, D, 3He and 7Li, but also 6Li, 9Be, 11B and up to CNO isotopes. These are, for instance, important for the initial composition of the matter at the origin of the first stars. Big-Bang nucleosynthesis, that has been used, to first constrain the baryonic density, and the number of neutrino families, remains, a valuable tool to probe the physics of the early Universe, like variation of "constants" or alternative theories of gravity.Comment: Invited Plenary Talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Isocurvature perturbations in extra radiation

    Full text link
    Recent cosmological observations, including measurements of the CMB anisotropy and the primordial helium abundance, indicate the existence of an extra radiation component in the Universe beyond the standard three neutrino species. In this paper we explore the possibility that the extra radiation has isocurvatrue fluctuations. A general formalism to evaluate isocurvature perturbations in the extra radiation is provided in the mixed inflaton-curvaton system, where the extra radiation is produced by the decay of both scalar fields. We also derive constraints on the abundance of the extra radiation and the amount of its isocurvature perturbation. Current observational data favors the existence of an extra radiation component, but does not indicate its having isocurvature perturbation. These constraints are applied to some particle physics motivated models. If future observations detect isocurvature perturbations in the extra radiation, it will give us a hint to the origin of the extra radiation.Comment: 41 pages, 8 figures; version accepted for publication in JCA
    corecore