246 research outputs found

    Polynomial Path Orders

    Full text link
    This paper is concerned with the complexity analysis of constructor term rewrite systems and its ramification in implicit computational complexity. We introduce a path order with multiset status, the polynomial path order POP*, that is applicable in two related, but distinct contexts. On the one hand POP* induces polynomial innermost runtime complexity and hence may serve as a syntactic, and fully automatable, method to analyse the innermost runtime complexity of term rewrite systems. On the other hand POP* provides an order-theoretic characterisation of the polytime computable functions: the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*.Comment: LMCS version. This article supersedes arXiv:1209.379

    A Combination Framework for Complexity

    Get PDF
    In this paper we present a combination framework for polynomial complexity analysis of term rewrite systems. The framework covers both derivational and runtime complexity analysis. We present generalisations of powerful complexity techniques, notably a generalisation of complexity pairs and (weak) dependency pairs. Finally, we also present a novel technique, called dependency graph decomposition, that in the dependency pair setting greatly increases modularity. We employ the framework in the automated complexity tool TCT. TCT implements a majority of the techniques found in the literature, witnessing that our framework is general enough to capture a very brought setting

    Polynomial Path Orders: A Maximal Model

    Full text link
    This paper is concerned with the automated complexity analysis of term rewrite systems (TRSs for short) and the ramification of these in implicit computational complexity theory (ICC for short). We introduce a novel path order with multiset status, the polynomial path order POP*. Essentially relying on the principle of predicative recursion as proposed by Bellantoni and Cook, its distinct feature is the tight control of resources on compatible TRSs: The (innermost) runtime complexity of compatible TRSs is polynomially bounded. We have implemented the technique, as underpinned by our experimental evidence our approach to the automated runtime complexity analysis is not only feasible, but compared to existing methods incredibly fast. As an application in the context of ICC we provide an order-theoretic characterisation of the polytime computable functions. To be precise, the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*

    On Sharing, Memoization, and Polynomial Time (Long Version)

    Get PDF
    We study how the adoption of an evaluation mechanism with sharing and memoization impacts the class of functions which can be computed in polynomial time. We first show how a natural cost model in which lookup for an already computed value has no cost is indeed invariant. As a corollary, we then prove that the most general notion of ramified recurrence is sound for polynomial time, this way settling an open problem in implicit computational complexity
    • …
    corecore