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Abstract
In this paper we present a combination framework for the automated polynomial complexity
analysis of term rewrite systems. The framework covers both derivational and runtime complexity
analysis, and is employed as theoretical foundation in the automated complexity tool TCT. We
present generalisations of powerful complexity techniques, notably a generalisation of complexity
pairs and (weak) dependency pairs. Finally, we also present a novel technique, called dependency
graph decomposition, that in the dependency pair setting greatly increases modularity.
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1 Introduction

In order to measure the complexity of a term rewrite system (TRS for short) it is natural to
look at the maximal length of derivation sequences—the derivation length—as suggested by
Hofbauer and Lautemann in [15]. The resulting notion of complexity is called derivational
complexity. Hirokawa and the second author introduced in [12] a variation, called runtime
complexity, that only takes basic or constructor-based terms as start terms into account.
The restriction to basic terms allows one to accurately express the complexity of a program
through the runtime complexity of a TRS. Noteworthy both notions constitute an invariant
cost model for rewrite systems [10, 4].

The body of research in the field of complexity analysis of rewrite systems provides a
wide range of different techniques to analyse the time complexity of rewrite systems, fully
automatically. Techniques range from direct methods, like polynomial path orders [3, 5]
and other suitable restrictions of termination orders [9, 20], to transformation techniques,
maybe most prominently adaptions of the dependency pair method [12, 14, 21], semantic
labeling over finite carriers [2], methods to combine base techniques [24] and the weight
gap principle [12, 24]. (See [19] for an overview of complexity analysis methods for term
rewrite systems.) In particular the dependency pair method for complexity analysis allows
for a wealth of techniques originally intended for termination analysis. We mention (safe)
reduction pairs [12, 14], various rule transformations [21], and usable rules [12, 14]. Some
very effective methods have been introduced specifically for complexity analysis in the context
of dependency pairs. For instance, path analysis [12, 13, 14] decomposes the analysed rewrite
relation into simpler ones, by treating paths through the dependency graph independently.
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56 A Combination Framework for Complexity

Knowledge propagation [21] is another complexity technique relying on dependency graph
analysis, which allows one to propagate bounds for specific rules along the dependency graph.
Besides these, various minor simplifications are implemented in tools, mostly relying on
dependency graph analysis. With this paper, we provide following contributions.

1. We propose a uniform combination framework for complexity analysis, that is capable of
expressing the majority of the rewriting based complexity techniques in a unified way. Such
a framework is essential for the development of a modern complexity analyser for term
rewrite systems. The implementation of our complexity analyser TCT [7], the Tyrolean
Complexity Tool, closely follows the formalisation proposed in this work. Noteworthy,
TCT is currently the only tool that participates in all four complexity sub-divisions of the
annual termination competition.1

2. A majority of the cited techniques were introduced in restricted or incompatible contexts.
For instance, in [24] the derivational complexity of relative TRSs is considered. Conversely,
neither [12, 14] nor [21] treat relative systems, and restrict their attention to basic start
terms. Where non-obvious, we generalise these techniques to our setting. Noteworthy,
our notion of P-monotone complexity pair generalises complexity pairs from [24] for
derivational complexity, µ-monotone complexity pairs for runtime complexity analysis [14],
and safe reduction pairs studied in [12, 21] that work on dependency pairs.2 We also
generalise the two different forms of dependency pairs for complexity analysis introduced
in [12] and [21]. This for instance allows our tool TCT to employ these powerful techniques
on a TRS R relative to some theory expressed as a TRS S.

3. We introduce a novel proof technique for runtime-complexity analysis called dependency
graph decomposition. Resulting sub-problems are syntactically of a simpler form, and the
analysis of these sub-problems is often easier. Importantly, the sub-problems are usually
also computationally simpler in the sense that their complexity is strictly smaller than
the one of the input problem. If the complexity of the two generated sub-problems is
bounded by a function in O(f) and O(g) respectively, then the complexity of the input is
bounded by O(f · g). Experiments conducted with TCT indicate that this estimation is
often asymptotically precise.3

This paper is structured as follows. In the next section we cover some basics. Our
combination framework is then introduced in Section 3. In Section 4 we introduce P-
monotone complexity pairs. In Section 5 we introduce dependency pairs for complexity
analysis, and reprove soundness of weak dependency pairs and dependency tuples. In
Section 6 we introduce dependency graph decomposition, and conclude in Section 7.

Due to space limitations some proofs are only sketched, or have been completely omitted.
The reader is kindly referred to the technical report [6], where proofs are given in full detail.

2 Preliminaries

Let R be a binary relation. The transitive closure of R is denoted by R+ and its transitive
and reflexive closure by R∗. For n ∈ N we denote by Rn the n-fold composition of R. The
binary relation R is well-founded (on a set A) if there exists no infinite chain a0, a1, . . . with

1 http://www.termination-portal.org/wiki/Termination_Competition/.
2 In [21] safe reductions pairs are called com-monotone reduction pairs.
3 Detailed experimental evidence is provided online under http://cl-informatik.uibk.ac.at/software/

tct/experiments/tct2.

http://www.termination-portal.org/wiki/Termination_Competition
http://cl-informatik.uibk.ac.at/software/tct/experiments/tct2
http://cl-informatik.uibk.ac.at/software/tct/experiments/tct2
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ai R ai+1 for all i ∈ N (a0 ∈ A). The relation R is finitely branching if for all elements a, the
set {b | a R b} is finite. A preorder is a reflexive and transitive binary relation.

We assume familiarity with rewriting [8] and just fix notations. We denote by V a
countably infinite set of variables and by F a signature. The signature F and variables V are
fixed throughout the paper, the set of terms over F and V is written as T (F ,V). Throughout
the following, we suppose a partitioning of F into constructors C and defined symbols D. The
set of basic terms f(s1, . . . , sn), where f ∈ D and arguments si (i = 1, . . . , n) contain only
variables or constructors, is denoted by Tb. Terms are denoted by s, t, . . . , possibly followed
by subscripts. We use s|p to refer to the subterm of s at position p. We denote by |t| the size
of t, i.e., the number of occurrences of symbols in t. A rewrite relation → is a binary relation
on terms closed under contexts and stable under substitutions. We use R,S,Q,W to refer
to term rewrite systems (TRSs for short). We denote by NF(R) the normal forms of R, and
abusing notation we extend this notion to binary relations → on terms in the obvious way.
For a set of terms T ⊆ T (F ,V), we define →(T ) := {t | ∃s ∈ T. s→ t}.

For two TRSs Q and R, we define s Q−→R t if there exists a context C, substitution σ, and
rule f(l1, . . . , ln)→ r ∈ R such that s = C[f(l1σ, . . . , lnσ)], t = C[rσ] and all arguments liσ
(i = 1, . . . , n) are Q normal forms. If Q = ∅, we sometimes drop Q and write −→R instead
of ∅−→R. Note that −→R corresponds to the usual definition of rewrite relation of R. The
innermost rewrite relation of a TRS R is given by R−→R. We extend Q−→R to a relative setting
and define for TRSs R and S the relation Q−→R/S := Q−→∗S · Q−→R · Q−→∗S , and call Q−→R/S the
Q-restricted rewrite relation of R modulo S.

To compare partial functions we use Kleene equality: two partial functions f, g : N→ N
are equal, in notation f ' g, if for all n ∈ N either f(n) and g(n) are defined and f(n) = g(n),
or both f(n) and g(n) are undefined. The derivation height of a term t with respect to a binary
relation → on terms is given by dh(t,→) ' max{n | ∃t1, . . . , tn. t → t1 → · · · → tn}. We
emphasise that dh(t, Q−→R/S), if defined, binds the number of R steps in all Q−→R∪S derivations
starting from t. We emphasise that our techniques always imply that dh(t,→) is well-defined.
Let T be a set of terms, and define cp(n, T,→) := max{dh(t,→) | ∃t ∈ T, |t| 6 n}.
The derivational complexity of a TRS R is given by dcR(n) := cp(n, T (F ,V),−→R) for all
n ∈ N, the runtime complexity takes only basic terms as starting terms T into account:
rcR(n) := cp(n, Tb,−→R) for all n ∈ N. By exchanging −→R with R−→R we obtain the notions
of innermost derivational or runtime complexity respectively.

3 The Combination Framework

At the heart of our framework lies the notion of complexity processor, or simply processor. A
complexity processor dictates how to transform the analysed input problem into sub-problems
(if any), and how to relate the complexity of the obtained sub-problems to the complexity of
the input problem. In our framework, such a processor is modeled as a set of inference rules

` P1 : f1 · · · ` Pn : fn
` P : f ,

over judgements of the form ` P : f . Here P denotes a complexity problem (problem for
short) and f : N → N a bounding function. The validity of a judgement ` P : f is given
when the function f binds the complexity of the problem P asymptotically.

Conceptually, a complexity problem P consists of a set of starting terms T together
with a relation Q−→S∪W for TRSs S,W and Q. The complexity function cpP : N→ N of P
accounts for the number of applications of rules from S in derivations starting from terms
t ∈ T , measured in the size of t.

RTA’13



58 A Combination Framework for Complexity

I Definition 3.1 (Complexity Problem, Complexity Function).
1. A complexity problem P (problem for short) is a quadruple 〈S,W,Q, T 〉, in notation
〈S/W,Q, T 〉, where S,W,Q are TRSs and T ⊆ T (F ,V) a set of terms.

2. The complexity (function) cpP : N→ N of P is defined as the partial function

cpP(n) := cp(n, T , Q−→S/W) .

In the sequel P, possibly followed by subscripts, always denotes a complexity problem.
Consider a problem P = 〈S/W,Q, T 〉. We call S and W the strict and weak component
of P respectively. The set T is called the set of starting terms of P. We sometimes write
l→ r ∈ P for l→ r ∈ S∪W , and we denote by −→P the rewrite relation Q−→S∪W . A derivation
t −→P t1 −→P · · · is also called a P-derivation (starting from t). Observe that the derivational
complexity of a TRS R corresponds to the complexity function of 〈R/∅,∅, T (F ,V)〉. By
exchanging the set of starting terms to basic terms we can express the runtime complexity of
a TRS R. If the starting terms are all basic terms, we call such a problem also a runtime
complexity problem. Likewise, we can treat innermost rewriting by using Q = R. For the
case NF(Q) ⊆ NF(S ∪W), that is when −→P is included in the innermost rewrite relation of
R∪ S, we also call P an innermost complexity problem.

I Example 3.2. Consider the rewrite system R× given by the four rules

1 : 0 + y → y 2 : s(x) + y → s(x+ y) 3 : 0× y → 0 4 : s(x)× y → (x× y) + y ,

and let Tb denote basic terms with defined symbols +,× and constructors s, 0. Then P× :=
〈R×/∅,R×, Tb〉 is an innermost runtime complexity problem, in particular the complexity of
P equals the innermost runtime complexity of R×.

Note that even if Q−→S/W is terminating, the complexity function is not necessarily defined
on all inputs. For a counter example, consider the problem P1 := 〈S1/W1,∅, {f(⊥)}〉 where
S1 := {g(s(x))→ g(x)} and W1 := {f(x)→ f(s(x)), f(x)→ g(x)}. Note that for all n ∈ N,
maximal −→P1

derivations are of the form

f(⊥) −→∗W1
f(sn(⊥)) −→W1

g(sn(⊥)) −→n
S1

g(⊥) .

Hence f(⊥) −→n
S1/W1

g(⊥) holds for all n ∈ N. Whereas −→S1/W1
is well-founded, the above

family of derivations shows that cpP1(m) ' dh(f(⊥),−→S1/W1
) is undefined for m > 2. If

Q−→S/W is well-founded and finitely branching then cpP is defined on all inputs, by König’s
Lemma. This condition is sufficient but not necessary. The complexity function of the problem
P2 := 〈S2/W1,∅, {f(⊥)}〉, where S2 := {g(x)→ x}, is constant but f(⊥) −→S2/W1

sn(⊥) for
all n ∈ N, i.e, −→S2/W1

is not finitely branching. In this work we do not presuppose that the
complexity function is defined on all inputs, instead, this will be determined by our methods.

I Definition 3.3 (Judgement, Processor, Proof).
1. A (complexity) judgment is a statement ` P : f where P is a complexity problem and

f : N→ N. The judgment is valid if cpP is defined on all inputs, and cpP ∈ O(f).
2. A complexity processor Proc (processor for short) is an inference rule

` P1 : f1 · · · ` Pn : fn
` P : f Proc ,

over complexity judgements. The problems P1, . . . ,Pn are called the sub-problems
generated by Proc on P. The processor Proc is sound if ` P : f is valid whenever the
statements ` P1 : f1, . . . , ` Pn : fn are valid. The processor is complete if the inverse
direction holds.
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3. Let empty denote the axiom ` 〈∅/W,Q, T 〉 : f for all TRSsW and Q, set of terms T and
f : N→ N. A complexity proof (proof for short) of a judgement ` P : f is a deduction
using sound processors from the axiom empty and assumptions ` P1 : f1, . . . , ` Pn : fn,
in notation P1 : f1, . . . ,Pn : fn ` P : f .

We say that a complexity proof is closed if its set of assumptions is empty, otherwise it is
open. We follow the usual convention and annotate side conditions as premises to inference
rules. As stated in the next lemma, soundness of a processor guarantees our formal system
is correct. Completeness ensures that a deduction gives asymptotically tight bounds.

I Lemma 3.4. If there exists a closed complexity proof ` P : f , then the judgement ` P : f
is valid.

4 Suiting Reduction Orders to Complexity

Maybe the most obvious tools for complexity analysis in rewriting are reduction orders, in
particular interpretations. Consequently these have been used quite early for complexity
analysis. For instance, in [9] polynomial interpretations are used in a direct setting in order to
estimate the runtime complexity analysis of a TRS. On the other hand in [24] complexity pairs,
that constitute of a reduction order and a corresponding preorder, are employed to estimate
the derivational complexity in a relative setting. Relaxing monotonicity requirements on
complexity pairs gives rise to a notion of reduction pair, so called safe reduction pairs [12],
that can be used to estimate the runtime complexity of dependency pair problems, cf. [14, 21].
In the following, we introduce P-monotone complexity pairs, that give a unified account of
the orders given in [9, 24, 14, 21].

We fix a complexity problem P = 〈S/W,Q, T 〉. Consider a proper order � on terms, and
let G : T (F ,V)→ N. Suppose that G(s) > G(t) holds whenever s Q−→S/W t and s � t holds,
for all terms s reachable from t ∈ T with a P-derivation (s ∈ −→∗P(T )). Then � is called
G-collapsible (on P). If in addition G(t) is asymptotically bounded by a function f : N→ N
in the size of t for all start terms t ∈ T , i.e., G(t) ∈ O(f(|t|)) for t ∈ T , we say that �
induces the complexity f on P. In particular polynomial and matrix interpretations [8, 16]
are collapsible, and also recursive path order [8] are. All these termination techniques have
been suitable tamed so that the induced complexity is a polynomial [9, 18, 3].

Consider an order � that induces the complexity f on P. If this order includes the
relation Q−→S/W , the judgement ` P : f is valid. To check the inclusion, as in [24] we consider
a pair of orders (%,�) where the preorder % and the order � are compatible in the sense
that % · � ·% ⊆ � holds. It is obvious that when both orders are monotone and stable under
substitutions, the assertionsW ⊆ % and S ⊆ � imply Q−→S/W ⊆ � as desired. Guided by the
observation that monotonicity is required only on argument positions that can be rewritten
in reductions of starting terms, Hirokawa and the second author [14] propose the use of
µ-monotone orders for runtime complexity analysis. Initially introduced [25] for termination
analysis of context sensitive rewrite systems [17], the parameter µ denotes a replacement
map, i.e., a map that assigns to every n-ary function symbol f ∈ F a subset of its argument
positions: µ(f) ⊆ {1, . . . , n}. In the realm of context sensitive rewriting this map governs
under which argument positions a rewrite step is allowed, here µ is used to designate which
arguments are usable for a set of rules R in P-derivations, i.e., can be rewritten by a rule
l→ r ∈ R in P-derivations starting from t ∈ T .

Denote by Posµ(t) the µ-replacing positions in t, defined as Posµ(t) := {ε} if t is a
variable, and Posµ(t) := {ε} ∪ {i·p | i ∈ µ(f) and p ∈ Posµ(ti)} for t = f(t1, . . . , tn). For a
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60 A Combination Framework for Complexity

binary relation → on terms we denote by Tµ(→) the set of terms t where subterms at non-µ-
replacing positions are in normal form: t ∈ Tµ(→) if for all positions p in t, if p 6∈ Posµ(t)
then t|p ∈ NF(→).

I Definition 4.1. Let P be a complexity problem with starting terms T and let R denote a
set of rewrite rules. A replacement map µ is called a usable replacement map for R in P, if
−→∗P(T ) ⊆ Tµ( Q−→R).

Put otherwise, µ denotes a usable replacement map for R in P if for any rewrite step s Q−→R t

with s ∈ −→∗P(T ) the rewrite position p is µ-replacing. It is undecidable to determine if µ is
a usable replacement map for rules R in P. Exploiting that for runtime complexity starting
terms are basic, in [14] good approximations for full and innermost rewriting are given.

I Example 4.2 (Example 3.2 continued). Consider the P×-derivation

2× 1 −→P× (1× 1)+1 −→P× ((0× 1)+1)+1 −→P× (0 + 1)+1 −→P× s(0 + 0)+1 −→P× 1+1 ,

where redexes are underlined. Here, and also in consecutive examples, we use the notation
n for the numeral s(· · · (s(0)) · · · ) with n ∈ N occurrences of the constructor s. Observe
that if multiplication occurs in a context, then only under the first argument position of
addition. This holds even for all P×-derivations of basic terms. The map µ×, defined by
µ×(+) = {1} and µ×(×) = µ×(s) = ∅, thus constitutes a usable replacement map for the
multiplication rules {3, 4} in P×. Since the argument position of s is not usable in µ×, the
last step witnesses that µ× does not designate a usable replacement map for the addition
rules {1, 2}.

We say that an order � is µ-monotone if it is monotone on µ positions, in the sense that for
all function symbols f , if i ∈ µ(f) and si � ti then f(s1, . . . , si, . . . , sn) � f(s1, . . . , ti, . . . , sn)
holds. The next intermediate lemma follows by a standard induction on the rewrite position,
and is central to the definition of P-monotone complexity pair defined below.

I Lemma 4.3. Let µ be a usable replacement map for R in P, and let � denote a µ-monotone
order that is stable under substitutions. If R ⊆ � holds, i.e., rewrite rules in R are oriented
from left to right, then s Q−→R t implies s � t for all terms s ∈ −→∗P(T ).

I Definition 4.4 (Complexity Pair, P-monotone).
1. A complexity pair is a pair (%,�), such that % is a stable preorder and � a stable order

with % · � ·% ⊆ �.
2. Suppose % is µW -monotone for a usable replacement map of W in P, and likewise � is

µS -monotone for a usable replacement map of S in P . Then (%,�) is called P-monotone.

I Lemma 4.5. Consider a P-monotone complexity pair (%,�) such that the order � is
G-collapsible on P. Further, suppose that (%,�) is compatible with P in the sense that
W ⊆ % and S ⊆ � hold. Then s Q−→S/W t implies s � t for all terms s ∈ −→∗P(T ). In
particular, dh(t, Q−→S/W) 6 G(t) for all t ∈ T .

Proof. Consider a Q-restricted relative step s Q−→∗W · Q−→S · Q−→∗W t for s ∈ −→∗P(T ). Using
the assumptions on (%,�) and the inclusions W ⊆ % and S ⊆ � to satisfy the assumptions
of Lemma 4.3, we obtain s %∗ · � · %∗ t. Hence s � t follows by transitivity of % and the
inclusion % · � ·% ⊆ �.

As a consequence, every rewrite sequence t = t0
Q−→S/W t1

Q−→S/W · · · for t ∈ T translates
to G(t) = G(t0) > G(t1) > · · · , thus dh(t, Q−→S/W) is defined and bounded by G(t). J
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As immediate consequence of this lemma, we obtain our first processor.

I Theorem 4.6 (Complexity Pair Processor). Let (%,�) be a P-monotone complexity pair
such that � induces the complexity f on P. The following processor is sound:

S ⊆ � W ⊆ %

` 〈S/W,Q, T 〉 : f CP .

When the set of starting terms is unrestricted only the full replacement map is usable
for rules of P. In this case, our notion of complexity pairs collapses to the one given by
Zankl and Korp [24]. We emphasise that in contrast to [14], our notion of complexity pair
is parameterised in separate replacements for % and �. By this separation we can restate
(safe) reduction pairs originally proposed in [12], employed in the dependency pair setting
below, as instances of complexity pairs (cf. Lemma 5.9).

A variation of the complexity pair processor, that iteratively orients disjoint subsets of S,
occurred first in [24]. The following processor constitutes a straight forward generalisation
of [24, Theorem 4.4] to our setting.

I Theorem 4.7 (Decompose Processor [24]). The following processor is sound:

` 〈S1/S2 ∪W,Q, T 〉 : f ` 〈S2/S1 ∪W,Q, T 〉 : g
` 〈S1 ∪ S2/W,Q, T 〉 : f + g

decompose
.

Proof. The lemma follows as dh(t, Q−→S1∪S2/W) 6 dh(t, Q−→S1/S2∪W) + dh(t, Q−→S2/S1∪W). J

In combination with for instance complexity pairs, the decompose processor allows as in
[24] shifting of rules from the strict to the weak component. This is demonstrated in the
following proof, that was automatically found by our complexity prover TCT.

I Example 4.8 (Examples 3.2 and 4.2 continued). Consider the linear polynomial interpreta-
tion A over N such that 0A = 0, sA(x) = x+ 1, x+A y = x+ y and x×A y = x · y + x2. Let
P4 := 〈{4}/{1, 2, 3},R×, Tb〉 denote the problem that accounts for the rules 4 : s(x)× y →
(x × y) + y in P×. The induced order >A together with its reflexive closure >A forms
a P4-monotone complexity pair (>A, >A) that induces quadratic complexity on P4. The
following depicts a complexity proof 〈{1, 2, 3}/{4},R×, Tb〉 : g ` P× : n2 + g.

{4} ⊆ >A {1, 2, 3} ⊆ >A
` 〈{4}/{1, 2, 3},R×, Tb〉 : n2 CP ` 〈{1, 2, 3}/{4},R×, Tb〉 : g

` P× : n2 + g
decompose

.

The above complexity proof can now be completed iteratively, on the simpler problem
〈{1, 2, 3}/{4},R×, Tb〉. Since the complexity of P× is cubic, one has to use a technique
beyond quadratic polynomial interpretations here. We remark that the decompose processor
finds applications beyond its combination with complexity pairs, for instance TCT uses this
processor to separation independent components by analysing the dependency graph [14].

5 Dependency Pair Processors

The introduction of dependency pairs (DPs for short) [1], and its formalisation in the
dependency pair framework [23], drastically increased power and modularity in termination
provers. It is well established that the DP method is unsuitable for complexity analysis. The
induced complexity is simply too high [22], in the sense that the complexity of R is not
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62 A Combination Framework for Complexity

suitably reflected in its canonical DP problem. Hirokawa and the second author [12] recover
this deficiency with the introduction of weak dependency pairs. Crucially, weak dependency
pairs group different function calls in right-hand sides, using compound symbols.

In this section, we first introduce a notion of dependency pair complexity problem (DP
problem for short), a specific instance of a complexity problem. In Theorem 5.8 and
Theorem 5.12 we then introduce the weak dependency pair and dependency tuples processors,
that construct from a runtime complexity problem its canonical DP problem. We emphasise
that both processors are conceptually not new, weak dependency pairs were introduced
in [12], and dependency tuples in [21]. Here, we establish a simulation that also accounts for
relative rewrite steps, consequently our processors provide a generalisations of [12, 21].

Consider a signature F that is partitioned into defined symbols D and constructors C.
Let t ∈ T (F ,V) be a term. For t = f(t1, . . . , tn) and f ∈ D, we set t] = f ](t1, . . . , tn)
where f ] is a new n-ary function symbol called dependency pair symbol. For t not of this
shape, we set t] = t. The least extension of the signature F containing all such dependency
pair symbols is denoted by F ]. For a set T ⊆ T (F ,V), we denote by T ] the set of marked
terms T ] = {t] | t ∈ T}. Let Ccom = {c0, c1, . . . } be a countable infinite set of fresh
compound symbols, where we suppose ar(cn) = n. Compound symbols are used to group
calls in dependency pairs for complexity (dependency pairs or DPs for short). We define
com(t1, . . . , tn) := cn(t1, . . . , tn) where cn ∈ Ccom for n 6= 1, for n = 1 we set com(t) := t.

I Definition 5.1 (Dependency Pair, Dependency Pair Complexity Problem).
1. A dependency pair (DP for short) is a rewrite rule l] → com(r]1, . . . , r]n) where l, r1, . . . , rn ∈
T (F ,V) and l is not a variable.

2. Let S and W be two TRSs, and let S] and W] be two sets of dependency pairs. A
complexity problem 〈S] ∪ S/W] ∪W,Q, T ]〉 with T ] ⊆ T ]b is called a dependency pair
complexity problem (or simply DP problem).

We keep the convention that R,S,W, . . . are TRSs over T (F ,V), and the marked version
R],S],W], . . . always denote sets of dependency pairs.

I Example 5.2 (Example 3.2 continued). Denote by S]× the dependency pairs

5 : s(x)×] y → c2((x× y) +] y, x×] y) 6 : s(x) +] y → x+] y ,

and T ]b the set of (marked) basic terms with defined symbols +],×] and constructors
s, 0. Then P]× := 〈S]×/R×,R×, T

]
b 〉, where R× are the rules for addition and multiplication

depicted in Example 3.2, is a DP problem. We anticipate that the DP problem P]× reflects
the complexity of our multiplication problem P×, compare Theorem 5.12 below.

For the remainder of this section, we fix a DP problem P] = 〈S] ∪ S/W] ∪W,Q, T ]〉.
We call an n-holed context C a compound context if it contains only compound symbols.
Consider the P]× derivation

D : 2×] 1 −→P]
×

c2((1× 1) +] 1,1×] 1)

−→∗P]
×

c2(1 +] 1,1×] 1)

−→2
P]
×

c2(0 +] 1, c2((0× 1) +] 1,0×] 1)) .

Observe that any term in the above sequence can be written as C[t1, . . . , tn] where C is a
maximal compound context, and t1, . . . , tn are marked terms without compound symbols.
For instance, the last term in this sequence is given as C[0 ×] 1, (0 × 1) +] 1,0 ×] 1] for
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C := c2(2, c2(2,2)). This holds even in general, with the exception that t1, . . . , tn are not
necessarily marked. Note that such an unmarked term ti (i ∈ {1, . . . , n}) can only result
from the application of a collapsing rule l] → x for x a variable, which is permitted by our
formulation of dependency pair. We capture this observation with the set T ]→, defined as the
least extension of T (F ,V) and T ](F ,V) that is closed under compound contexts. Then the
following observation holds.

I Lemma 5.3. For every TRS R and DPs R], we have −→∗R]∪R(T ]→) ⊆ T ]→. In particular,
−→∗P](T ]) ⊆ T ]→ follows.

Proof. Let s = C[s1, . . . , sn] ∈ T ]→ where C is a maximal compound context. Suppose
s −→R]∪R t. Since C contains only compound symbols, it follows that t = C[s1, . . . , ti, . . . , sn]
where si −→R]∪R ti for some i ∈ {1, . . . , n}, where again ti ∈ T ]→. Consequently, t ∈ T ]→ and
the first half of the lemma follows by inductive reasoning. From this the second half of the
lemma follows, using that T ] ⊆ T ]→ and taking R] := S] ∪W] and R := S ∪W. J

Consider a term t = C[t1, . . . , tn] ∈ T ]→ for a maximal compound context C. Any
reduction of t consists of independent sub-derivations of ti (i = 1, . . . , n), which are possibly
interleaved. To avoid reasoning up to permutations of rewrite steps, we introduce a notion of
derivation tree that disregards the order of parallel steps under compound contexts.

A (directed) hypergraph over labels L is a triple G = (N,E, lab) where N is a set of
nodes, E ⊆ N × P(N) a set of edges, and lab : N ∪ E → L a labeling function. For
e = 〈u, {v1, . . . , vn}〉 ∈ E we call the node u the source, and nodes v1, . . . , vn the targets of e.
We keep the convenience that every node is the source of at most one edge. We denote by
−⇀G the successor relation in G, i.e., u −⇀G v if there exists an edge e = 〈u, {v1, . . . , vn}〉 ∈ E
with v ∈ {v1, . . . , vn}. We set u K−⇀G v for labels K ⊆ L if additionally lab(e) ∈ K holds, and
abbreviate {l}−−⇀G by l−⇀G. If there exists a path u = w1 −⇀G · · · −⇀G wn = v we say that v is
reachable from u in G. We call G a hypertree (tree for short) if there exists a unique node
u ∈ N , the root of G, such that every v ∈ N is reachable from u by a unique path.

I Definition 5.4. Let t ∈ T ](F ,V)∪T (F ,V). The set of P] derivation trees of t, in notation
DTreeP](t), is defined as the least set of labeled hypertrees such that:
1. T ∈ DTreeP](t) where T consists of a unique node labeled by t.
2. Suppose t Q−→{l→r} com(t1, . . . , tn) for l → r ∈ P] and let Ti ∈ DTreeP](ti) for i =

1, . . . , n. Then T ∈ DTreeP](t), where T is a tree with children Ti (i = 1, . . . , n), the root
of T is labeled by t, and the edge from the root of T to its children is labeled by l→ r.

2×] 1

s(x)×] y → c2((x× y) +] y, x×] y)

(1× 1) +] 1

s(x)× y → (x× y) + y

1 +] 1

s(x) +] y → x +] y

0 +] 1

1×] 1

s(x)×] y → c2((x× y) +] y, x×] y)

(0× 1) +] 1 0×] 1

Figure 1 P]
× derivation tree of 2×] 1.

Figure 1 depicts a derivation tree
T of P]× (cf. Example 5.2) that corres-
ponds to the derivation D given below
Example 5.2, in the sense that every edge
e = 〈u, {v1, . . . , vn}〉 in T labeled by
rule l→ r corresponds to a rewrite step
t Q−→l→r com(t1, . . . , tn) inD, with t and
t1, . . . , tn precisely the label of source u
and targets v1, . . . , vn respectively. We
also say that l→ r was applied at node
u in T . This correspondence leads to the
following characterisation of the complex-
ity function of DP problems P]. Let |T |R]∪R denote the number of applications of a rule
l→ r in the derivation tree T , i.e., the number of edges in T labeled by a rule l→ r ∈ R]∪R.

RTA’13



64 A Combination Framework for Complexity

I Lemma 5.5. For every t ∈ T (F ,V) ∪ T ](F ,V), we have

dh(t, Q−→S]∪S/W]∪W) ' max{|T |S]∪S | T is a P]-derivation tree of t} .

In particular cpP](n) ' max{|T |S]∪S | T is a P]-derivation tree of t ∈ T with |t| 6 n} holds.

5.1 Weak Dependency Pairs and Dependency Tuples
I Definition 5.6 (Weak Dependency Pairs [12]). Let R denote a TRS such that the defined
symbols ofR, i.e., roots of left-hand sides, are included in D. Consider a rule l→ C[r1, . . . , rn]
in R, where C is a maximal context containing only constructors. The dependency pair
l] → com(r]1, . . . , r]n) is called a weak dependency pair of R, in notation WDP(l → r). We
denote by WDP(R) := {WDP(l→ r) | l→ r ∈ R} the set of all weak dependency pairs of R.

In [12] it has been shown that for any term t ∈ T (F ,V), dh(t,−→R) = dh(t],−→WDP(R)∪R).
We extend this result to our setting, where the following lemma serves as a preparatory step.

I Lemma 5.7. Let R and Q be two TRSs, such that the defined symbols of R are included
in D. Then every derivation

t = t0
Q−→R1

t1
Q−→R2

t2
Q−→R3

· · · ,

for basic term t and Ri ⊆ R (i > 1) is simulated step-wise by a derivation

t] = s0
Q−→WDP(R1)∪R1

s1
Q−→WDP(R2)∪R2

s2
Q−→WDP(R3)∪R3

· · · ,

and vice versa.

I Theorem 5.8 (Weak Dependency Pair Processor). Let P = 〈S/W,Q, T 〉 such that all
defined symbols in S ∪W occur in D. The following processor is sound and complete.

` 〈WDP(S) ∪ S/WDP(W) ∪W,Q, T ]〉 : f
` 〈S/W,Q, T 〉 : f

Weak Dependency Pairs

Proof. Set P := 〈S/W,Q, T 〉 and P] := 〈WDP(S)∪S/WDP(W)∪W,Q, T ]〉. Suppose first
cpP] ∈ O(f(n)). Lemma 5.7 shows that every −→P reduction of t ∈ T is simulated by a
corresponding −→P] reduction starting from t] ∈ T ]. Observe that every Q−→S step in the
considered derivation is simulated by a Q−→WDP(S)∪S step. We thus obtain cpP ∈ O(f(n)).
This proves soundness, completeness is obtained dual. J

Unlike for termination analysis, one has to account also for rewrite rules beside dependency
pairs. In contrast, DP problems of the form 〈S]/W]∪W,Q, T ]〉 are usually easier to analyse,
as rules that need to be accounted for, viz those appearing in the strict component, can only
be applied in compound contexts. Some processors tailored for DP problems are even sound
only in this setting [6]. Notably, in this setting the complexity pair processor requires that
the strict order is monotone only on argument positions of compound symbols:

I Lemma 5.9. Let µ denote a usable replacement map for dependency pairs R] in P]. Then
µcom is a usable replacement map for R] in P], where µcom denotes the restriction of µ to
compound symbols in the following sense: µcom(cn) := µ(cn) for all cn ∈ Ccom, and otherwise
µcom(f) := ∅ for f ∈ F ].
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Proof. For a proof by contradiction, suppose µcom is not a usable replacement map for R]
in P. Thus there exists s ∈ −→∗P(T ) and position p ∈ Pos(s) such that s Q−→R],p t for some
term t, but p 6∈ Posµcom(s). Since s ∈ T ]→ by Lemma 5.3, symbols above position p in s are
compound symbols, and so p 6∈ Posµ(s) by definition of µcom. This contradicts however that
µ is a usable replacement map for R] in P. J

We remark that using Lemma 5.9 together with Theorem 4.6, our notion of P-monotone
complexity pair generalises safe reduction pairs from [12], that constitute of a rewrite preorder
% compatible with a total order � that is stable under substitutions. Here safe means that �
is monotone on compound contexts. It also generalises the notion of µ-monotone complexity
pair from [14], that is parameterised by a single replacement map µ for all rules in P.

In [12], the weight gap principle is introduced, with the objective to move the strict rules
S into the weak component, in order to obtain a DP problem of the form 〈S]/W]∪W,Q, T ]〉,
after the weak dependency pair transformation. Dependency tuples introduced in [21] avoid
the problem altogether. A complexity problem is directly translated into this form, at the
expense of completeness and a more complicated set of dependency pairs.

I Definition 5.10 (Dependency Tuples [21]). Let R denote a TRS such that the defined
symbols of R are included in D. For a rewrite rule l → r ∈ R, let r1, . . . , rn denote
all subterms of the right-hand side whose root symbol is in D. The dependency pair
l] → com(r]1, . . . , r]n) is called a dependency tuple of R, in notation DT(l→ r). We denote
by DT(R) := {DT(l→ r) | l→ r ∈ R}, the set of all dependency tuples of R.

The central theorem of [21] states that dependency tuples are sound for runtime complexity
analysis. We extend this result to a relative setting.

I Lemma 5.11. Let R and Q be two TRSs, such that the defined symbols of R are included
in D, and such that NF(Q) ⊆ NF(R). Then every derivation

t = t0
Q−→R1

t1
Q−→R2

t2
Q−→R3

· · · ,

for basic term t and Ri ⊆ R (i > 1) is simulated step-wise by a derivation

t] = s0
Q−→DT(R1)∪R1

s1
Q−→DT(R2)∪R2

s2
Q−→DT(R3)∪R3

· · · .

I Theorem 5.12 (Dependency Tuple Processor). Let P = 〈S/W,Q, T 〉 be an innermost
complexity problem such that all defined symbols in S ∪ W occur in D. The following
processor is sound.

` 〈DT(S)/DT(W) ∪ S ∪W,Q, T ]〉 : f
` 〈S/W,Q, T 〉 : f

Dependency Tuples

Proof. The theorem follows by reasoning identical to Theorem 5.8, using Lemma 5.11. J

The problem P]× depicted in Example 5.2 is obtained from the runtime complexity problem
P× of Example 3.2 using the above processor. For the sake of presentation we omitted the
trivial dependency pairs 7 : 0 +] y → c0 and 8 : 0×] y → c0. That this omission is inessential
has already been observed in [21], see also the technical report [6] on how this simplification
can be formalised in our setting.
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6 Dependency Graph Decomposition

In this section we focus on a novel technique that we call dependency graph decomposition
(DG decomposition for short). Our work on this processor is motivated by the fact that we
were not aware of a single method that translates a complexity problem into computationally
simpler sub-problems, in the sense that any proof is of the form P1 : f1, . . . ,Pn : fn ` P : f
with f ∈ O(fi) for some i ∈ {1, . . . , n}. This implies that the maximal bound one can prove
is essentially determined by the strength of the employed base techniques, viz complexity
pairs. In our experience however, a complexity prover is seldom able to synthesise a suitable
and precise complexity pair that induces a complexity bound beyond a cubic polynomial.

We adapt the notion of dependency graph [1] to complexity problems.

I Definition 6.1 (Dependency Graph). Let P] = 〈S] ∪ S/W] ∪ W,Q, T ]〉 denote a DP
problem. The nodes of the dependency graph (DG for short) G of P] are the dependency
pairs from S] ∪W], and there is an arrow labeled by i ∈ N from s] → com(t]1, . . . , t]n) to
u] → com(v]1, . . . , v]m) if for some substitutions σ, τ : V → T (F ,V), t]iσ Q−→

∗
S∪W u]τ .

5 6

2 1

1

Figure 2 DG of P]
×.

Figure 2 depicts the dependency graph of our running example
P]×, where nodes (5) and (6) refer to the DPs given in Example 5.2.
The dependency graph G indicates in which order dependency pairs
can occur in a derivation tree of P]. To make this intuition precise,
we adapt the notion of DP chain known from termination analysis
to derivation trees. Recall that for a derivation tree T , −⇀T denotes
the successor relation, and R−⇀T its restriction to edges labeled by l→ r ∈ R.

I Definition 6.2 (Dependency Pair Chain). Let T be a derivation tree, and consider a path

u1
{l1 → r1}−−−−−−⇀T · S ∪W−−−−⇀∗T u2

{l2 → r2}−−−−−−⇀T · S ∪W−−−−⇀∗T · · · ,

for a sequence of dependency pairs C : l1 → r1, l2 → r2, . . . . The sequence C is called a
dependency pair chain (in T ), or DP chain for brevity.

I Lemma 6.3. Every chain in a P] derivation tree is a path in the dependency graph of P].

Dependency graph decomposition seeks to analyse recursive definitions, as reflected by
cycles in the DG, separately. This method is thus closely connected to cycle analysis as
introduced for termination in [11], that allows the decomposition of the input into separate
cycles with respect to the DG.

I Example 6.4 (Example 5.2 continued). Reconsider the problem P]× = 〈{5, 6}/R×,R×, T ]b 〉
given in Example 5.2. A decomposition into cycles amounts to an inference

` 〈{5}/R×,R×, T ]b 〉 : f ` 〈{6}/R×,R×, T ]b 〉 : g
` 〈{5, 6}/R×,R×, T ]b 〉 : cf,g ,

for cycles (5) and (6), compare Figure 2. This inference is sound for termination analysis [11].
Notice that for f and g we can substitute linear functions, whereas the overall complexity of
P]× is cubic. To see that this bound holds, consider a maximal reduction of t] ∈ T ] for the
more involved case t] = m×] n. Then the ith application of

5 : s(x)×] y → c2((x× y) +] y, x×] y) ,

in this derivation triggers an independent sub-derivation starting from t]i = mi +] n, where
mi := (m − i) ∗ n. It is not difficult to verify that the number of applications of (6) in a
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sub-derivation of t]i is bounded by mi, thus bounded by a quadratic polynomial in the size
of t]. As there are at most as many such sub-derivations as there are applications of the
DP (5), viz linearly many in the size of t], we obtain an overall cubic bound.

Dependency graph decomposition can infer this bound automatically, using similar reasoning.
Taking the call-structure between cycles into account is crucial for such an analysis:

I Example 6.5. Let P]exp := 〈R]exp/Rexp,Rexp, T ]b 〉 where dependency pairs R]exp are

9 : d](s(x))→ d](x) 10 : e](s(x))→ c2(d](e(x)), e](x)) ,

and the rewrite system Rexp is given by the four rules

11 : d(0)→ 0 12 : d(s(x))→ s(s(d(x)) 13 : e(0)→ 0 14 : e(s(x))→ d(e(x)) ,

that compute exponentiation on numerals. The DG of P]exp consists of two cycles, (9) and
(10) respectively. While the complexity of 〈{9}/Rexp,Rexp, T ]b 〉 and 〈{10}/Rexp,R]exp, T

]
b 〉 is

again linear, the complexity of P]exp is exponential.

In contrast to a full decomposition into all cycles, DG decomposition produces a pair
of sub-problems, obtained by separating the dependency graph between maximal cycles.
Iterated application then extends to a separate analysis of all cycles. Call a set of DPs
R] forward closed in P], if it is closed under successors with respect to the DG of P], i.e.,
if there is an edge from s → t ∈ R] to u → v then also u → v ∈ R]. Throughout the
following, we fix a complexity problem P] = 〈S]u ∪ S

]
l ∪ S/W]

u ∪ W
]
l ∪ W,Q, T ]〉 whose

strict and weak dependency pairs are partitioned such that S]l ∪W
]
l is forward closed in P].

t]

T↑

t]1

T1

t]i

Ti

t]m

Tm
Figure 3 Separation of deriva-

tion tree T in upper and lower layer.

As S]l ∪ W
]
l is forward closed in P], DPs from S]u ∪

W]
u can trigger applications of DPs from S]l ∪ W

]
l but

not vice versa, compare Lemma 6.3. To formalise this
observation, consider a P] derivation tree T of t] ∈ T ].
Then the forward closed set S]l ∪W

]
l induces a separation

of T into two (possibly empty) layers, demarcated by
topmost applications of DPs from S]l ∪ W

]
l : the lower

layer constitutes of the (maximal) subtrees T1, . . . , Tm of
T with a dependency pair l→ r ∈ S]l ∪W

]
l applied at the

root, by forward closure these are 〈S]u∪S/W]
u∪W,Q, T ]〉

derivation trees of some terms t]i (i = 1, . . . ,m) in T ; the
upper layer consists of the derivation tree T↑ obtained from T by removing the sub-trees
T1, . . . , Tm. Compare Figure 3 that illustrates this separation. The DG decomposition
processor uses the DPs sep(S]u ∪W]

u), defined as follows, to extend the derivation trees Ti of
t]i to derivation trees of t] ∈ T ].

I Definition 6.6. For a set of DPs R] we define

sep(R]) := {l→ ri | l→ com(r1, . . . , ri, . . . , rk) ∈ R]} .

I Example 6.7 (Example 6.4 continued). Consider the complexity problem P]× from Ex-
ample 5.2, where {6 : s(x)+] y → x+] y} constitutes a forward closed set of DPs with respect
to the DG drawn in Figure 2.

Let T denote a P]× derivation tree of t] := m ×] n (m,n ∈ N). For mi := (m − i) · n
(i = 1, . . . ,m), the nodes labeled by t]i := mi +] n demarcate upper and lower layer in T ,
compare the derivation tree depicted in Figure 1. Consider the DPs sep({5}) given by

5a : s(x)×] y → (x× y) +] y 5b : s(x)×] y → x×] y .
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Let Ti (i = 1, . . . ,m) denote the sub-trees rooted at the nodes labeled by t]i that constitute the
lower layer in T . In combination with rewrite rulesR×, the DPs (5a) and (5b) generate exactly
the terms t]i from t]. As a consequence, the complexity problem 〈{6}/{5a, 5b} ∪R×,R×, T ]b 〉
accounts for applications of {6} in the sub-trees Ti. In other words, it accounts for applications
of DPs in the sub-derivations of t]i as investigated in Example 6.4. In correspondence to
Example 6.4, it is not difficult to verify that ` 〈{6}/{5a, 5b} ∪ R×,R×, T ]b 〉 : n2 is valid.

It is also not difficult to verify that ` 〈{5}/R×,R×, T ]b 〉 : n holds, and this linear bound
can be used to bind the applications of the remaining DP (5) in the upper layer T↑ of T , thus
in T . As this also bind the number of sub-trees T1, . . . , Tm that constitute lower layer, we
overall get a cubic bound on applications on DPs in T in the size of t], i.e., |T |{5,6} ∈ O(|t]|3).

The previous complexity proof is an instance of DG decomposition as introduced below.
The next two lemmas, used in the soundness proof of the DG decomposition processor,
formalise the crucial proof steps employed in Example 6.7. The first observation is simple.

I Lemma 6.8. Let S]l ∪W
]
l be a forward closed set of DPs in P], and let T be a P] derivation

tree T of t] ∈ T ]. Consider the maximal sub-trees T1, . . . , Tm of T such that l→ r ∈ S]l ∪W
]
l

is applied at the root, and let T↑ be obtained from T by removing T1, . . . , Tm. Then
1. T↑ is a 〈S]u ∪ S/W]

u ∪W,Q, T ]〉 derivation tree of t];
2. for all i = 1, . . . ,m, there exists a 〈S]l ∪ S/W

]
l ∪ W ∪ sep(S]u ∪ W]

u),Q, T ]〉 derivation
trees of t], that contains Ti as sub-tree.

Denote by PreG(l→ r) direct predecessors of the dependency pair l→ r in the DG G of
P], extended to sets of DPs by PreG(R]) := ∪l→r∈R] PreG(l→ r).

I Lemma 6.9. Let S]l ∪ W
]
l be a forward closed set of DPs in P], and let T be a P]

derivation tree T of t] ∈ T ]. Let T1, . . . , Tm denote the maximal sub-trees of T with
l → r ∈ R] applied at the root. There exists a constant ∆ ∈ N depending only on P] such
that m 6 max{1, |T |PreG(R])\R] ·∆}.

Proof. Let ∆ be the maximal arity of a compound symbol from P], and observe that every
node in T has at most ∆ successors. Denote by {u1, . . . , um} the roots of Ti (i = 1, . . . ,m).
The non-trivial case is m > 1. In this case, each path from the root of T to the nodes
ui ∈ {u1, . . . , um} contains at least one node with a DP applied. Let {v1, . . . , vn} collect
such nodes closest to {u1, . . . , um}. In particular, we can thus associate to every node
ui ∈ {u1, . . . , um} a node vi′ ∈ {v1, . . . , vn} and DP l → r ∈ P] such that vi′ {li → ri}−−−−−−⇀T

· S ∪W−−−−⇀∗T ui holds. As vi′ has at most ∆ successors and S ∪W−−−−⇀T is non-branching, it follows
that m 6 ∆ ·n. By Lemma 6.3, for i = 1, . . . ,m we see li → ri ∈ PreG(R]). As Ti is maximal,
li → ri 6∈ R]. Hence n 6 |T |PreG(R])\R] and the lemma follows. J

I Theorem 6.10 (Dependency Graph Decomposition). Consider a dependency pair problem
P] = 〈S]u ∪ S

]
l ∪ S/W]

u ∪ W
]
l ∪ W,Q, T ]〉 such that (i) S]l ∪ W

]
l is forward closed and

(ii) PreG(S]l ∪W
]
l ) ∩W]

u = ∅ for the DG G of P]. The following processor is sound.

` 〈S]u ∪ S/W]
u ∪W,Q, T ]〉 : f ` 〈S]l ∪ S/W

]
l ∪ sep(S]u ∪W]

u) ∪W,Q, T ]〉 : g
` 〈S]u ∪ S

]
l ∪ S/W]

u ∪W
]
l ∪W,Q, T ]〉 : f ∗ g

DG decomp.
,

for all bounding functions f and g such that f(n) 6= 0 and g(n) 6= 0 for all n ∈ N.

Proof. Consider a P] derivation tree of t] ∈ T ]. We tacitly employ the characterisation of
complexity function given in Lemma 5.5, and estimate |T |S]

u∪S]
l
∪S by a function in O(f ∗ g).
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Consider the separation of T as induced by forward closure of S]l ∪W
]
l into the upper layer

T↑, and lower layer consisting of the derivation trees Ti of t]i (i = 1, . . . ,m), as in Figure 3.
By Lemma 6.8(2) the trees Ti (i = 1, . . . ,m) can be extended to 〈S]l ∪S/W

]
l ∪W ∪ sep(S]u ∪

W]
u),Q, T ]〉 derivation tree T ′i of t]. In particular, the complexity of 〈S]l ∪ S/W

]
l ∪ W ∪

sep(S]u ∪ W]
u),Q, T ]〉 binds applications of S]l ∪ S in Ti, i.e., |Ti|S]

l
∪S = |T ′i |S]

l
∪S . Hence

|Ti|S]
l
∪S ∈ O(g(|t]|)) by the second precondition of the processor. Similar, Lemma 6.8(1)

and the first precondition of the processor gives |T↑|S]
u∪S ∈ O(f(|t]|)). By assumption (ii)

and Lemma 6.9 we see m 6 max{1, |T |PreG(S]
l
∪W]

l
)\(S]

l
∪W]

l
)} 6 max{1, |T↑|S]

u∪S}. Putting
these bounds together we get

|T |S]
u∪S]

l
∪S = |T↑|S]

u∪S +
∑m
i=1|Ti|S]

l
∪S

6 |T↑|S]
u∪S + max{1, |T↑|S]

u∪S} ·maxmi=1|Ti|S]
l
∪S

∈ O(f(|t]|)) + O(f(|t]|)) ∗ O(g(|t]|)) = O(f(|t]|) ∗ f(|t]|)) .
J

I Example 6.11 (Example 6.7 continued). Reconsider the DP problem P]× = 〈S]×/R×,R×, T
]

b 〉.
According to Theorem 6.10, the following depicts a sound inference:

` 〈{5}/R×,R×, T ]b 〉 : f ` 〈{6}/{5a, 5b} ∪ R×,R×, T ]b 〉 : g
` 〈S]×/R×,R×, T

]
b 〉 : f ∗ g .

It is not difficult to find polynomial interpretations that verify that the sub-problems have
linear and quadratic complexity respectively. Overall we thus obtain the (tight) bound O(n3),
which in turn binds the complexity of P× by Theorem 5.12.

7 Conclusion

We have presented a combination framework for automated polynomial complexity analysis
of term rewrite systems. The framework is general enough to reason about both runtime and
derivational complexity, and to formulate a majority of the techniques available for proving
polynomial complexity of rewrite systems. On the other hand, it is concrete enough to serve
as a basis for a modular complexity analyser, as demonstrated by our automated complexity
analyser TCT which closely implements the discussed framework.

Besides the combination framework we have introduced the notion of P-monotone
complexity pair that unifies the different orders used for complexity analysis in the cited
literature. Last but not least, we have presented the dependency graph decomposition
processor. This processor is easy to implement, and greatly improves modularity. This is
underpinned by the experimental evidence given online4 that highlights the strength of our
framework, and in particular of the dependency graph decomposition processor.
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