76 research outputs found

    Low self-affine exponents of fracture surfaces of glass ceramics

    Get PDF
    The geometry of post mortem rough fracture surfaces of porous glass ceramics made of sintered glass beads is shown experimentally to be self-affine with an exponent zeta=0.40 (0.04) remarkably lower than the 'universal' value zeta=0.8 frequently measured for many materials. This low value of zeta is similar to that found for sandstone samples of similar micro structure and is also practically independent on the porosity phi in the range investigated (3% < phi < 26%) as well as on the bead diameter d and of the crack growth velocity. In contrast, the roughness amplitude normalized by d increases linearly with phi while it is still independent, within experimental error, of d and of the crack propagation velocity. An interpretation of this variation is suggested in terms of a transition from transgranular to intergranular fracture propagation with no influence, however, on the exponent zeta.Comment: 4 page

    Turning bacteria suspensions into a "superfluid"

    Full text link
    The rheological response under simple shear of an active suspension of Escherichia coli is determined in a large range of shear rates and concentrations. The effective viscosity and the time scales characterizing the bacterial organization under shear are obtained. In the dilute regime, we bring evidences for a low shear Newtonian plateau characterized by a shear viscosity decreasing with concentration. In the semi-dilute regime, for particularly active bacteria, the suspension display a "super-fluid" like transition where the viscous resistance to shear vanishes, thus showing that macroscopically, the activity of pusher swimmers organized by shear, is able to fully overcome the dissipative effects due to viscous loss

    Flow channelling in a single fracture induced by shear displacement

    Full text link
    The effect on the transport properties of fractures of a relative shear displacement u\vec u of rough walls with complementary self-affine surfaces has been studied experimentally and numerically. The shear displacement u\vec u induces an anisotropy of the aperture field with a correlation length scaling as uu and significantly larger in the direction perpendicular to u\vec u. This reflects the appearance of long range channels perpendicular to u\vec u resulting in a higher effective permeability for flow in the direction perpendicular to the shear. Miscible displacements fronts in such fractures are observed experimentally to display a self affine geometry of characteristic exponent directly related to that of the rough wall surfaces. A simple model based on the channelization of the aperture field allows to reproduces the front geometry when the mean flow is parallel to the channels created by the shear displacement

    2D Electrical Resistivity Tomography surveys optimisation of solutes transports in porous media

    No full text
    International audienceThe purpose of this study is to quantify experimentally the evolution of dissolved species in porous media from 2D resistivity models. Transport experiments are carried out at the laboratory scale by performing flow in a model porous medium obtained by filling a transparent container with mono disperse glass beads. A tracer made by mixing a dissolved of blue dye and a known NaCl concentration is injected with a constant flow rate through the porous medium already saturated by a transparent fluid. ERT measurements are acquired during the fluid flow. The measurement conditions and the inversion parameters are estimated so that the relation between spatial and temporal resolutions is optimised. A video follow-up is also carried out during the upward tracer propagation. The comparison of the temporal evolution of the NaCl concentration distribution estimated from ERT models with Video analysis shows remarkable agreement

    Transverse and lateral confinement effects on the oscillations of a free cylinder in a viscous flow

    Get PDF
    The different types of instabilities of free cylinders (diameter DD, length LL) have been studied in a viscous flow (velocity UU) between parallel vertical walls of horizontal width WW at a distance HH: the influence of the confinement parameters D/HD/H and L/WL/W has been investigated. As D/HD/H increases, there is a transition from stable flow to oscillations transverse to the walls and then to a fluttering motion with oscillations of the angle of the axis with respect to the horizontal. The two types of oscillations may be superimposed in the transition domain. The frequency ff of the transverse oscillations is independent of the lateral confinement L/WL/W in the range: 0.055 \le L/W \le 0.94foragivencylindervelocity for a given cylinder velocity V_{cx}andincreasesonlyweaklywith and increases only weakly with V_{cx}.Theseresultsareaccountedforbyassuminga2Dlocalflowoverthecylinderwithacharacteristicvelocityindependentof. These results are accounted for by assuming a 2D local flow over the cylinder with a characteristic velocity independent of L/Wforagiven for a given V_{cx}value.Theexperimentalvaluesof value. The experimental values of farealsoindependentofthetransverseconfinement are also independent of the transverse confinement D/H.Thefrequency. The frequency f_foftheflutteringmotionissignificantlylowerthan of the fluttering motion is significantly lower than f:: f_fisalsonearlyindependentofthecylinderdiameterandoftheflowvelocitybutdecreasessignificantlyas is also nearly independent of the cylinder diameter and of the flow velocity but decreases significantly as L/W$ increases. The fluttering instability is then rather a 3D phenomenon involving the full length of the cylinder and the clearance between its ends and the side walls

    Effect of the porosity on the fracture surface roughness of sintered materials: From anisotropic to isotropic self-affine scaling

    Get PDF
    To unravel how the microstructure affects the fracture surface roughness in heterogeneous brittle solids like rocks or ceramics, we characterized the roughness statistics of post-mortem fracture surfaces in home-made materials of adjustable microstructure length-scale and porosity, obtained by sintering monodisperse polystyrene beads. Beyond the characteristic size of disorder, the roughness profiles are found to exhibit self-affine scaling features evolving with porosity. Starting from a null value and increasing the porosity, we quantitatively modify the self-affine scaling properties from anisotropic (at low porosity) to isotropic (for porosity larger than 10 %).Comment: 10 pages, 10 figures, Physical Review E in Jan 2015, Vol. 91 Issue
    corecore