29 research outputs found

    Serological evidence for Japanese encephalitis and West Nile virus infections in domestic birds in Cambodia

    Get PDF
    Mosquito-borne flaviviruses with an enzootic transmission cycle like Japanese encephalitis virus (JEV) and West Nile virus (WNV) are a major public health concern. The circulation of JEV in Southeast Asia is well-documented, and the important role of pigs as amplification hosts for the virus is long known. The influence of other domestic animals especially poultry that lives in high abundance and close proximity to humans is not intensively analyzed. Another understudied field in Asia is the presence of the closely related WNV. Such analyses are difficult to perform due to the intense antigenic cross-reactivity between these viruses and the lack of suitable standardized serological assays. The main objective of this study was to assess the prevalence of JEV and WNV flaviviruses in domestic birds, detailed in chickens and ducks, in three different Cambodian provinces. We determined the flavivirus seroprevalence using an hemagglutination inhibition assay (HIA). Additionally, we investigated in positive samples the presence of JEV and WNV neutralizing antibodies (nAb) using foci reduction neutralization test (FRNT). We found 29% (180/620) of the investigated birds positive for flavivirus antibodies with an age-depended increase of the seroprevalence (OR = 1.04) and a higher prevalence in ducks compared to chicken (OR = 3.01). Within the flavivirus-positive birds, we found 43% (28/65) with nAb against JEV. We also observed the expected cross-reactivity between JEV and WNV, by identifying 18.5% double-positive birds that had higher titers of nAb than single-positive birds. Additionally, seven domestic birds (10.7%) showed only nAb against WNV and no nAb against JEV. Our study provides evidence for an intense JEV circulation in domestic birds in Cambodia, and the first serological evidence for WNV presence in Southeast Asia since decades. These findings mark the need for a re-definition of areas at risk for JEV and WNV transmission, and the need for further and intensified surveillance of mosquito-transmitted diseases in domestic animals

    Direct Infection of B Cells by Dengue Virus Modulates B Cell Responses in a Cambodian Pediatric Cohort

    Get PDF
    Dengue is an acute viral disease caused by dengue virus (DENV), which is transmitted by Aedes mosquitoes. Symptoms of DENV infection range from inapparent to severe and can be life-threatening. DENV replicates in primary immune cells such as dendritic cells and macrophages, which contribute to the dissemination of the virus. Susceptibility of other immune cells such as B cells to direct infection by DENV and their subsequent response to infection is not well defined. In a cohort of 60 Cambodian children, we showed that B cells are susceptible to DENV infection. Moreover, we show that B cells can support viral replication of laboratory adapted and patient-derived DENV strains. B cells were permissive to DENV infection albeit low titers of infectious virions were released in cell supernatants CD300a, a phosphatidylserine receptor, was identified as a potential attachment factor or receptor for entry of DENV into B cells. In spite of expressing Fcγ-receptors, antibody-mediated enhancement of DENV infection was not observed in B cells in an in vitro model. Direct infection by DENV induced proliferation of B cells in dengue patients in vivo and plasmablast/plasma cell formation in vitro. To summarize, our results show that B cells are susceptible to direct infection by DENV via CD300a and the subsequent B cell responses could contribute to dengue pathogenesis

    Decreased Type I Interferon Production by Plasmacytoid Dendritic Cells Contributes to Severe Dengue

    Get PDF
    International audienceThe clinical presentation of dengue virus (DENV) infection is variable. Severe complications mainly result from exacerbated immune responses. Type I interferons (IFN-I) are important in antiviral responses and form a crucial link between innate and adaptive immunity. Their contribution to host defense during DENV infection remains under-studied, as direct quantification of IFN-I is challenging. We combined ultra-sensitive single-molecule array (Simoa) digital ELISA with IFN-I gene expression to elucidate the role of IFN-I in a well-characterized cohort of hospitalized Cambodian children undergoing acute DENV infection. Higher concentrations of type I IFN proteins were observed in blood of DENV patients, compared to healthy donors, and correlated with viral load. Stratifying patients for disease severity, we found a decreased expression of IFN-I in patients with a more severe clinical outcome, such as dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). This was seen in parallel to a correlation between low IFNα protein concentrations and decreased platelet counts. Type I IFNs concentrations were correlated to frequencies of plasmacytoid DCs, not DENV-infected myloid DCs and correlated inversely with neutralizing anti-DENV antibody titers. Hence, type I IFN produced in the acute phase of infection is associated with less severe outcome of dengue disease

    One assay to test them all: Multiplex assays for expansion of respiratory virus surveillance

    Get PDF
    Molecular multiplex assays (MPAs) for simultaneous detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza and respiratory syncytial virus (RSV) in a single RT-PCR reaction reduce time and increase efficiency to identify multiple pathogens with overlapping clinical presentation but different treatments or public health implications. Clinical performance of XpertXpress® SARS-CoV-2/Flu/RSV (Cepheid, GX), TaqPath™ COVID−19, FluA/B, RSV Combo kit (Thermo Fisher Scientific, TP), and PowerChek™ SARS-CoV-2/Influenza A&B/RSV Multiplex RT-PCR kit II (KogeneBiotech, PC) was compared to individual Standards of Care (SoC). Thirteen isolates of SARS-CoV-2, human seasonal influenza, and avian influenza served to assess limit of detection (LoD). Then, positive and negative residual nasopharyngeal specimens, collected under public health surveillance and pandemic response served for evaluation. Subsequently, comparison of effectiveness was assessed. The three MPAs confidently detect all lineages of SARS-CoV-2 and influenza viruses. MPA-LoDs vary from 1 to 2 Log10 differences from SoC depending on assay and strain. Clinical evaluation resulted in overall agreement between 97 and 100%, demonstrating a high accuracy to detect all targets. Existing differences in costs, testing burden and implementation constraints influence the choice in primary or community settings. TP, PC and GX, reliably detect SARS-CoV-2, influenza and RSV simultaneously, with reduced time-to-results and simplified workflows. MPAs have the potential to enhance diagnostics, surveillance system, and epidemic response to drive policy on prevention and control of viral respiratory infections

    Mosquito Vector Competence for Japanese Encephalitis Virus

    No full text
    International audienceJapanese encephalitis virus (JEV) is a zoonotic pathogen mainly found in East and Southeast Asia and transmitted by mosquitoes. The objective of this review is to summarize the knowledge on the diversity of JEV mosquito vector species. Therefore, we systematically analyzed reports of JEV found in field-caught mosquitoes as well as experimental vector competence studies. Based on the investigated publications, we classified 14 species as confirmed vectors for JEV due to their documented experimental vector competence and evidence of JEV found in wild mosquitoes. Additionally, we identified 11 mosquito species, belonging to five genera, with an experimentally confirmed vector competence for JEV but lacking evidence on their JEV transmission capacity from field-caught mosquitoes. Our study highlights the diversity of confirmed and potential JEV vector species. We also emphasize the variety in the study design of vector competence investigations. To account for the diversity of the vector species and regional circumstances, JEV vector competence should be studied in the local context, using local mosquitoes with local virus strains under local climate conditions to achieve reliable data. In addition, harmonization of the design of vector competence experiments would lead to better comparable data, informing vector and disease control measures

    Taking a bite out of nutrition and arbovirus infection.

    No full text
    Nutrition is a key factor in host-pathogen defense. Malnutrition can increase both host susceptibility and severity of infection through a number of pathways, and infection itself can promote nutritional deterioration and further susceptibility. Nutritional status can also strongly influence response to vaccination or therapeutic pharmaceuticals. Arthropod-borne viruses (arboviruses) have a long history of infecting humans, resulting in regular pandemics as well as an increasing frequency of autochthonous transmission. Interestingly, aside from host-related factors, nutrition could also play a role in the competence of vectors required for transmission of these viruses. Nutritional status of the host and vector could even influence viral evolution itself. Therefore, it is vital to understand the role of nutrition in the arbovirus lifecycle. This Review will focus on nutritional factors that could influence susceptibility and severity of infection in the host, response to prophylactic and therapeutic strategies, vector competence, and viral evolution

    Zikavirus prME Envelope Pseudotyped Human Immunodeficiency Virus Type-1 as a Novel Tool for Glioblastoma-Directed Virotherapy

    No full text
    Glioblastoma multiforme is the most lethal type of brain tumor that is not yet curable owing to its frequent resurgence after surgery. Resistance is mainly caused by the presence of a subpopulation of tumor cells, the glioma stem cells (GSCs), which are highly resistant to radiation and chemotherapy. In 2015, Zikavirus (ZIKV)-induced microcephaly emerged in newborns, indicating that ZIKV has a specific neurotropism. Accordingly, an oncolytic tropism for infecting GSCs was demonstrated in a murine tumor model. Like other flaviviruses, ZIKV is enveloped by two proteins, prM and E. The pME expression plasmid along with the HIV-1 vector pNL Luc AM generated prME pseudotyped viral particles. Four different prME envelopes, Z1 to Z4, were cloned, and the corresponding pseudotypes, Z1- to Z4-HIVluc, produced by this two-plasmid system, were tested for entry efficiency using Vero-B4 cells. The most efficient pseudotype, Z1-HIVluc, also infected glioma-derived cell lines U87 and 86HG39. The pseudotype system was then extended by using a three-plasmid system including pME-Z1, the HIV-1 packaging plasmid psPAX2, and the lentiviral vector pLenti-luciferase-P2A-Neo. The corresponding pseudotype, designated Z1-LENTIluc, also infected U87 and 86HG39 cells. Altogether, a pseudotyped virus especially targeting glioma-derived cells might be a promising candidate for a prospective glioblastoma-directed virotherapy

    Neutralization of Dengue Virus Serotypes by Sera from Dengue-Infected Individuals Is Preferentially Directed to Heterologous Serotypes and Not against the Autologous Serotype Present in Acute Infection

    No full text
    Sequential infections of humans by the four different dengue serotypes (DENV-1–4) lead to neutralizing antibodies with group, cross, and type specificity. Virus neutralization of serotypes showed monotypic but mostly multitypic neutralization profiles due to multiple virus exposures. We have studied neutralization to heterologous, reference DENV serotypes using paired sera collected between days 6 and 37 after onset of fever. The DENV-primed neutralization profile of the first serum sample, which was monitored by a foci reduction neutralization test (FRNT), was boosted but the neutralization profile stayed unchanged in the second serum sample. In 45 of 47 paired serum samples, the predominant neutralization was directed against DENV serotypes distinct from the infecting serotype. Homologous neutralization studies using sera and viruses from the same area, 33 secondary sera from DENV-1 infected Cambodian patients and eight virus isolates from Cambodia, showed that the FRNT assay accurately predicted the lack of a predominant antibody response against the infecting DENV-1 serotype in contrast to FRNT results using the WHO set of DENV viruses. This report provides evidence that DENV-primed multitypic neutralizing antibody profiles were mainly boosted and stayed unchanged after secondary infection and that DENV neutralization was predominantly directed to heterologous DENV but not against the infecting homologous serotype

    Vectors, hosts, symptomology and estimated numbers of cases and deaths of selected arboviruses.

    No full text
    <p>Vectors, hosts, symptomology and estimated numbers of cases and deaths of selected arboviruses.</p

    Seroprevalence studies associating nutrition with infection susceptibility and arbovirus infection in humans.

    No full text
    <p>Seroprevalence studies associating nutrition with infection susceptibility and arbovirus infection in humans.</p
    corecore