2,752 research outputs found

    The saga of the Ising susceptibility

    Full text link
    We review developments made since 1959 in the search for a closed form for the susceptibility of the Ising model. The expressions for the form factors in terms of the nome qq and the modulus kk are compared and contrasted. The λ\lambda generalized correlations C(M,N;λ)C(M,N;\lambda) are defined and explicitly computed in terms of theta functions for M=N=0,1M=N=0,1.Comment: 19 pages, 1 figur

    Self-Interacting Electromagnetic Fields and a Classical Discussion on the Stability of the Electric Charge

    Full text link
    The present work proposes a discussion on the self-energy of charged particles in the framework of nonlinear electrodynamics. We seek magnet- ically stable solutions generated by purely electric charges whose electric and magnetic fields are computed as solutions to the Born-Infeld equa- tions. The approach yields rich internal structures that can be described in terms of the physical fields with explicit analytic solutions. This suggests that the anomalous field probably originates from a magnetic excitation in the vacuum due to the presence of the very intense electric field. In addition, the magnetic contribution has been found to exert a negative pressure on the charge. This, in turn, balances the electric repulsion, in such a way that the self-interaction of the field appears as a simple and natural classical mechanism that is able to account for the stability of the electron charge.Comment: 8 pages, 1 figur

    Non-Hermitian Hamiltonians of Lie algebraic type

    Get PDF
    We analyse a class of non-Hermitian Hamiltonians, which can be expressed bilinearly in terms of generators of a sl(2,R)-Lie algebra or their isomorphic su(1,1)-counterparts. The Hamlitonians are prototypes for solvable models of Lie algebraic type. Demanding a real spectrum and the existence of a well defined metric, we systematically investigate the constraints these requirements impose on the coupling constants of the model and the parameters in the metric operator. We compute isospectral Hermitian counterparts for some of the original non-Hermitian Hamiltonian. Alternatively we employ a generalized Bogoliubov transformation, which allows to compute explicitly real energy eigenvalue spectra for these type of Hamiltonians, together with their eigenstates. We compare the two approaches.Comment: 27 page

    Thermofield Dynamics for Twisted Poincare-Invariant Field Theories: Wick Theorem and S-matrix

    Full text link
    Poincare invariant quantum field theories can be formulated on non-commutative planes if the statistics of fields is twisted. This is equivalent to state that the coproduct on the Poincare group is suitably twisted. In the present work we present a twisted Poincare invariant quantum field theory at finite temperature. For that we use the formalism of Thermofield Dynamics (TFD). This TFD formalism is extend to incorporate interacting fields. This is a non trivial step, since the separation in positive and negative frequency terms is no longer valid in TFD. In particular, we prove the validity of Wick's theorem for twisted scalar quantum field at finite temperature.Comment: v1: 25 pages, no figure v2: references added; typos corrected; typo in title correcte

    Antilinear deformations of Coxeter groups, an application to Calogero models

    Get PDF
    We construct complex root spaces remaining invariant under antilinear involutions related to all Coxeter groups. We provide two alternative constructions: One is based on deformations of factors of the Coxeter element and the other based on the deformation of the longest element of the Coxeter group. Motivated by the fact that non-Hermitian Hamiltonians admitting an antilinear symmetry may be used to define consistent quantum mechanical systems with real discrete energy spectra, we subsequently employ our constructions to formulate deformations of Coxeter models remaining invariant under these extended Coxeter groups. We provide explicit and generic solutions for the Schroedinger equation of these models for the eigenenergies and corresponding wavefunctions. A new feature of these novel models is that when compared with the undeformed case their solutions are usually no longer singular for an exchange of an amount of particles less than the dimension of the representation space of the roots. The simultaneous scattering of all particles in the model leads to anyonic exchange factors for processes which have no analogue in the undeformed case.Comment: 32 page

    Anatomia funcional de Lucina pectinata (Gmelin, 1791) Lucinidae - Bivalvia

    Get PDF
    A anatomia funcional de Lucina pectinata (Gmelin, 1791) foi estudada neste trabalho tendo sido dada atenção especial à formação do tubo inalante anterior, ao funcionamento do pé, manto, brânquias do manto, ctenídios, palpos labiais e estômago. Observações do comportamento do bivalve e o funcionamento destes órgãos permitiram verificar as adaptações relacionadas à vida em ambientes lodosos de enseadas sem arrebentação, onde existe pequena quantidade de alimento e pouco oxigênio em dissolução. Foiam analisadas a motilidade e atuação do pé, o tamanho dos palpos, ciliação do manto, do músculo adutor anterior, dos ctenídios e a estrutura e funcionamento do estomago. Os sifões são do tipo A (Yonge, 1948), os ctenídios pertencem a um novo tipo: G1, a relação entre os palpos e ctenídios é da categoria m (Stasek, 1963) e o estômago do tipo IV (Purchon, 1958)

    PT-symmetry breaking in complex nonlinear wave equations and their deformations

    Get PDF
    We investigate complex versions of the Korteweg-deVries equations and an Ito type nonlinear system with two coupled nonlinear fields. We systematically construct rational, trigonometric/hyperbolic, elliptic and soliton solutions for these models and focus in particular on physically feasible systems, that is those with real energies. The reality of the energy is usually attributed to different realisations of an antilinear symmetry, as for instance PT-symmetry. It is shown that the symmetry can be spontaneously broken in two alternative ways either by specific choices of the domain or by manipulating the parameters in the solutions of the model, thus leading to complex energies. Surprisingly the reality of the energies can be regained in some cases by a further breaking of the symmetry on the level of the Hamiltonian. In many examples some of the fixed points in the complex solution for the field undergo a Hopf bifurcation in the PT-symmetry breaking process. By employing several different variants of the symmetries we propose many classes of new invariant extensions of these models and study their properties. The reduction of some of these models yields complex quantum mechanical models previously studied.Comment: 50 pages, 39 figures (compressed in order to comply with arXiv policy; higher resolutions maybe obtained from the authors upon request
    corecore