22 research outputs found

    Behazun-gatzen garraioaren fisiologia

    Get PDF
    Heste mehera isurtzen diren behazun-gatzek lipidoen digestioan eta xurgapenean laguntzen dute. Behazun-gatzak hepatozitoek sintetizatzen dituzte kolesterola erabiliz; beren izaera anfipatikoa eta egitura molekularra direla-eta, detergente gisa jokatzen dute, eta beraz toxikoak izan daitezke kontzentrazio handietan. Hori horrela izanda, beren sintesia eta garraioa oso modu finean erregulatu behar dira, bai gibelean bai behazun-gatzen garraioan parte hartzen duten beste ehunetan. Lan honetan gainbegirada bat egin diegu behazun-gatzen metabolismoari eta garraio-prozesuei, azken hauen transkripzio mailako kontrolari buruz argitaratu diren azken lanak ere bilduz

    Targeting E2F Sensitizes Prostate Cancer Cells to Drug-Induced Replication Stress by Promoting Unscheduled CDK1 Activity

    Get PDF
    E2F1/E2F2 expression correlates with malignancy in prostate cancer (PCa), but its functional significance remains unresolved. To define the mechanisms governed by E2F in PCa, we analyzed the contribution of E2F target genes to the control of genome integrity, and the impact of modulating E2F activity on PCa progression. We show that silencing or inhibiting E2F1/E2F2 induces DNA damage during S phase and potentiates 5-FU-induced replication stress and cellular toxicity. Inhibition of E2F downregulates the expression of E2F targets involved in nucleotide biosynthesis (TK1, DCK, TYMS), whose expression is upregulated by 5-FU. However, their enzymatic products failed to rescue DNA damage of E2F1/E2F2 knockdown cells, suggesting additional mechanisms for E2F function. Interestingly, targeting E2F1/E2F2 in PCa cells reduced WEE1 expression and resulted in premature CDK1 activation during S phase. Inhibition of CDK1/CDK2 prevented DNA damage induced by E2F loss, suggesting that E2F1/E2F2 safeguard genome integrity by restraining CDK1/CDK2 activity. Importantly, combined inhibition of E2F and ATR boosted replication stress and dramatically reduced tumorigenic capacity of PCa cells in xenografts. Collectively, inhibition of E2F in combination with drugs targeting nucleotide biosynthesis or DNA repair is a promising strategy to provoke catastrophic levels of replication stress that could be applied to PCa treatment.This work was supported by grants from the MCIU/AEI/FEDER, UE (RTI2018-097497-B-100, PID2021-122922OB-100 and RED2018-102723-T) to A.M.Z., MCIU/AEI/FEDER, UE (PID2021-124425OB-I00) to P.A., Basque Government, Department of Education (IT1257-19 and IT1547-22) to A.M.Z and Basque Government, Department of Education (IT1476-2) to P.A. M.H. is recipient of the Asociación Española Contra el Cancer (AECC) predoctoral fellowship. J.M. is recipient of an Ikerbasque Research Foundation Fellowship

    Role of Oxidative Stress and Lipid Peroxidation in the Pathophysiology of NAFLD

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is characterised by an excess of hepatic fat that can progress to steatohepatitis, fibrosis, cirrhosis and hepatocarcinoma. The imbalance between lipid uptake/lipogenesis and lipid oxidation/secretion in the liver is a major feature of NAFLD. Given the lack of a non-invasive and reliable methods for the diagnosis of non-alcoholic steatohepatitis (NASH), it is important to find serum markers that are capable of discriminating or defining patients with this stage of NASH. Blood samples were obtained from 152 Caucasian subjects with biopsy-proven NAFLD due to persistently elevated liver enzyme levels. Metabolites representative of oxidative stress were assessed. The findings derived from this work revealed that NAFLD patients with a NASH score of ≥ 4 showed significantly higher levels of lipid peroxidation (LPO). Indeed, LPO levels above the optimal operating point (OOP) of 315.39 μM are an independent risk factor for presenting a NASH score of ≥ 4 (OR: 4.71; 95% CI: 1.68–13.19; p = 0.003). The area under the curve (AUC = 0.81, 95% CI = 0.73–0.89, p < 0.001) shows a good discrimination ability of the model. Therefore, understanding the molecular mechanisms underlying the basal inflammation present in these patients is postulated as a possible source of biomarkers and therapeutic targets in NASH.This research was funded by Consejería de Educación de Castilla y León (VA256P20), Instituto de Salud Carlos III (Grant CB21/13/0005, PI21/00917 and COV20/00491), Junta de Castilla y León (18IGOF), Gerencia Regional de Salud de Castilla y León (GRS2398/A/21), Fundación Ramón Areces (CIVP19A5953) and 7th Call for Gilead Biomedical Research Grants in HIV, Liver Diseases and Haemato-oncology

    A UHPLC-Mass Spectrometry View of Human Melanocytic Cells Uncovers Potential Lipid Biomarkers of Melanoma

    Get PDF
    Melanoma is the deadliest form of skin cancer due to its ability to colonize distant sites and initiate metastasis. Although these processes largely depend on the lipid-based cell membrane scaffold, our understanding of the melanoma lipid phenotype lags behind most other aspects of this tumor cell. Here, we examined a panel of normal human epidermal and nevus melanocytes and primary and metastatic melanoma cell lines to determine whether distinctive cell-intrinsic lipidomes can discern non-neoplastic from neoplastic melanocytes and define their metastatic potential. Lipidome profiles were obtained by UHPLC-ESI mass-spectrometry, and differences in the signatures were analyzed by multivariate statistical analyses. Significant and highly specific changes in more than 30 lipid species were annotated in the initiation of melanoma, whereas less numerous changes were associated with melanoma progression and the non-malignant transformation of nevus melanocytes. Notably, the “malignancy lipid signature” features marked drops in pivotal membrane lipids, like sphingomyelins, and aberrant elevation of ether-type lipids and phosphatidylglycerol and phosphatidylinositol variants, suggesting a previously undefined remodeling of sphingolipid and glycerophospholipid metabolism. Besides broadening the molecular definition of this neoplasm, the different lipid profiles identified may help improve the clinical diagnosis/prognosis and facilitate therapeutic interventions for cutaneous melanoma.This research was funded in part by grants from the Ministry of Economy; Industry and Competitiveness (RTC-2015-3693-1); Ministry of Science and Innovation (RTI-2018-095134-B-I00); Basque Government (IT971-16; IT1162-19; KK2016-036; KK2017-041 and KK2018-00090) and UPV/EHU (GIU17/066)

    BIRC6 Is Associated with Vulnerability of Carotid Atherosclerotic Plaque

    Get PDF
    Carotid atherosclerotic plaque rupture can lead to cerebrovascular accident (CVA). By comparing RNA-Seq data from vascular smooth muscle cells (VSMC) extracted from carotid atheroma surgically excised from a group of asymptomatic and symptomatic subjects, we identified more than 700 genomic variants associated with symptomatology (p < 0.05). From these, twelve single nucleotide polymorphisms (SNPs) were selected for further validation. Comparing genotypes of a hospital-based cohort of asymptomatic with symptomatic patients, an exonic SNP in the BIRC6 (BRUCE/Apollon) gene, rs35286811, emerged as significantly associated with CVA symptomatology (p = 0.002; OR = 2.24). Moreover, BIRC6 mRNA levels were significantly higher in symptomatic than asymptomatic subjects upon measurement by qPCR in excised carotid atherosclerotic tissue (p < 0.0001), and significantly higher in carriers of the rs35286811 risk allele (p < 0.0001). rs35286811 is a proxy of a GWAS SNP reported to be associated with red cell distribution width (RDW); RDW was increased in symptomatic patients (p < 0.03), but was not influenced by the rs35286811 genotype in our cohort. BIRC6 is a negative regulator of both apoptosis and autophagy. This work introduces BIRC6 as a novel genetic risk factor for stroke, and identifies autophagy as a genetically regulated mechanism of carotid plaque vulnerability.This work was financially supported by grants from the Departments of Education (Ref. PIBA2018-67) and Health (Ref. RIS3-2019222038) of the Basque Government, Vitoria-Gasteiz, Spain; by the Spanish Neurovascular Network (INVICTUSplus) (Ref. RD16/0019/0007) funded by the Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain; and by the research project grant (IKERIKTUS) funded by the RefbioII Trans-Pyrenean Cooperation Network for Biomedical Research financed by Horizon 2020. I.A. is supported by the Maratón EiTB 2017 for Funding of Research into Stroke, Bilbao, Spain (Ref. BIO18/IC/005); R.T.N. is the recipient of a fellowship from the Secretaría Nacional de Ciencia y Tecnología e Innovación (SENACYT; Convocatoria Doctorado de Investigación Ronda III, 2018; Ref. BIDP-III-2018-12) of the Gobierno Nacional, República de Panamá

    Membrane-Bound sn-1,2-Diacylglycerols Explain the Dissociation of Hepatic Insulin Resistance from Hepatic Steatosis in MTTP Knockout Mice

    Get PDF
    Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp(-/-)) mice and age-weight matched wild-type control mice. Young (10-12-week-old) L-Mttp(-/-) mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp(-/-) mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKC epsilon activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp(-/-) mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKC epsilon activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp(-/-) mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKC epsilon activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp(-/-) mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp(-/-) mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp(-/-) miceThis work was supported by National Institutes of Health Grants R01 DK116774, R01 DK119968, R01 DK114793, R01 DK113984, K23 DK10287, P30 DK045735, DK121490, and HL137202 and the Veterans Health Administration Merit Review Awards I01 BX000901 and BX004113. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the U.S. Department of Veterans Affair

    Mineralocorticoid Receptor Modulation by Dietary Sodium Influences NAFLD Development in Mice

    Get PDF
    Introduction and Objectives Nonalcoholic-fatty-liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome (MetS). Mineralocorticoid receptor (MR) activation is associated with increased risk of MetS but few studies have assessed the role of liver MR on NAFLD. We aimed to evaluate the effect of MR modulation by sodium intake in liver injury in experimental models of NAFLD. Materials and Methods C57BL/6J mice were fed either a high-fat-diet (HFD) or a choline/methionine deficient (MCD) diet with different sodium concentrations. Hepatic concentration of lipid species, serum aldosterone levels, expression of MR, proinflammatory and profibrotic markers and liver histology were assessed. Results Mice fed with High-Na+/HFD showed a lower MR expression in liver (p = 0.01) and less steatosis on histology (p = 0.04). Consistently, animals from this group exhibited lower levels of serum aldosterone (p = 0.028) and lower hepatic triglyceride content (p = 0.008). This associated to a reduced expression of lipogenic genes, significant changes in lipid subspecies, lower HOMA-IR (p < 0.05), and lower expression of pro-inflammatory and profibrotic markers compared to those mice fed a Low-Na+/HFD. Additionally, mice fed a High-Na+/HFD showed higher expression of salt-inducible kinase (SIK)-1 and lower expression of serum-and-glucocorticoid-inducible kinase (SGK)-1. Similar results were observed with the MCD diet model. Conclusion We identified in two experimental models of NAFLD that High-Na+ diet content is associated to lower serum aldosterone levels and hepatic MR downregulation, associated to decreased steatosis and reduced de novo hepatic lipogenesis, proinflammatory and profibrotic markers. Decreased activation of hepatic MR seems to generate beneficial downstream inhibition of lipogenesis in experimental NAFLD.This work was funded, in part, by grants from the Chilean Government [FONDECYT #1150327 and #1191145 to M.A.; #1200227 to JPA; #1190419 to R.B and #1191183 to F.B.; #1211879 to D.C.) and the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT, AFB170005, CARE Chile UC)]. MA is part of the European- Latin American ESCALON consortium funded by the European Union’s Horizon 2020 Research and Innovation Program under grant agreement no. 825510. Funding from Ayudas para apoyar grupos de investigación del sistema Universitario Vasco (IT971-16 to P.A.), MCIU/AEI/FEDER, UE (RTI2018-095134-B-100 to P.A) is also acknowledged

    Atorvastatin Provides a New Lipidome Improving Early Regeneration After Partial Hepatectomy in Osteopontin Deficient Mice

    Get PDF
    Osteopontin (OPN), a multifunctional cytokine that controls liver glycerolipid metabolism, is involved in activation and proliferation of several liver cell types during regeneration, a condition of high metabolic demands. Here we investigated the role of OPN in modulating the liver lipidome during regeneration after partial-hepatectomy (PH) and the impact that atorvastatin treatment has over regeneration in OPN knockout (KO) mice. The results showed that OPN deficiency leads to remodeling of phosphatidylcholine and triacylglycerol (TG) species primarily during the first 24 h after PH, with minimal effects on regeneration. Changes in the quiescent liver lipidome in OPN-KO mice included TG enrichment with linoleic acid and were associated with higher lysosome TG-hydrolase activity that maintained 24 h after PH but increased in WT mice. OPN-KO mice showed increased beta-oxidation 24 h after PH with less body weight loss. In OPN-KO mice, atorvastatin treatment induced changes in the lipidome 24 h after PH and improved liver regeneration while no effect was observed 48 h post-PH. These results suggest that increased dietary-lipid uptake in OPN-KO mice provides the metabolic precursors required for regeneration 24 h and 48 h after PH. However, atorvastatin treatment offers a new metabolic program that improves early regeneration when OPN is deficient.This work was supported by IT-336-10 (Gobierno Vasco) (to PA) and SAF2015-64352-R (to PA), SAF2017-87301-R (to MLM-C) and EITB Maratoia BIO15/CA/014 (to MLM-C). MNG and DM were recipients of a predoctoral fellowship from the University of Basque Country UPV/EHU and BG-S and DS were recipients for predoctoral fellowships from the Basque Goverment. We thank technical support from Jose Antonio Lopez Gomez

    miR-27b Modulates Insulin Signaling in Hepatocytes by Regulating Insulin Receptor Expression

    Get PDF
    Insulin resistance (IR) is one of the key contributing factors in the development of type 2 diabetes mellitus (T2DM). However, the molecular mechanisms leading to IR are still unclear. The implication of microRNAs (miRNAs) in the pathophysiology of multiple cardiometabolic pathologies, including obesity, atherosclerotic heart failure and IR, has emerged as a major focus of interest in recent years. Indeed, upregulation of several miRNAs has been associated with obesity and IR. Among them, miR-27b is overexpressed in the liver in patients with obesity, but its role in IR has not yet been thoroughly explored. In this study, we investigated the role of miR-27b in regulating insulin signaling in hepatocytes, both in vitro and in vivo. Therefore, assessment of the impact of miR-27b on insulin resistance through the hepatic tissue is of special importance due to the high expression of miR-27b in the liver together with its known role in regulating lipid metabolism. Notably, we found that miR-27b controls post-transcriptional expression of numerous components of the insulin signaling pathway including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1) in human hepatoma cells. These results were further confirmed in vivo showing that overexpression and inhibition of hepatic miR-27 enhances and suppresses hepatic INSR expression and insulin sensitivity, respectively. This study identified a novel role for miR-27 in regulating insulin signaling, and this finding suggests that elevated miR-27 levels may contribute to early development of hepatic insulin resistance.This work was supported by the Basque Government (Grupos Consolidados IT-1264-19). A.B.-V. was supported by Programa de especialización de Personal Investigador Doctor en la UPV/EHU (2019) 2019-2020. U.G-G. was supported by Fundación Biofísica Bizkaia. S.J. was supported by a grant PIF (2017–2018), Gobierno Vasco. We sincerely thank Haziq Siddiqi (Harvard Medical School) for his critical reading and editing of this manuscript
    corecore