5 research outputs found

    Synthesis and biological evaluation of cicerfuran an antifungal compound from chickpea roots

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Effect of CO2 on elemental concentrations in recirculating aquaculture system tanks

    Get PDF
    High levels of carbon dioxide (CO2) and subsequent changes in water quality parameters in recirculating aquaculture systems (RAS) are known to impair fish health, welfare and growth performance. A three-month trial was conducted in RAS tanks for Atlantic salmon (Salmo salar) post-smolt, where the effects of CO2 on various water quality parameters (such as pH, redox potential, conductivity, and toxic elements) in brackish water were investigated. The experimental setup contained 18 fish tanks (V = 0.5 m3) with six CO2 treatments (5, 12, 19, 26, 33 and 40 mg CO2 L−1) in triplicate (46 post-smolts tank−1). Initial fish body weight was 70 ± 0.5 g (± SE), final body weight was 232 ± 11 g, and the average growth rate was 1.39% d−1. Fish were fed continuously (approx. 23 h d−1) over satiation (120–140%) during the experiment. Levels of most of the physico-chemical parameters, except for pH (7.65–6.74 for 5–40 mg CO2 L−1 treatments) and redox potential (181.73–195.67 mV for 5–40 mg CO2 L−1 treatments), did not differ between different CO2 treatments. In total, 56 elements were measured, and 32 of these (such as Mg, S, Ca, Cd, Cu, Fe, Pb) were found to be above the limits of detection. None of the elements (except Fe) demonstrated any significant association with CO2 or any of the physico-chemical variables in the current set-up. Fe concentrations were higher in high CO2 treatments (13.0–13.6 μg L−1 for 33–40 mg CO2 L−1) compared with the lower ones (8.7–10.1 μg L−1 for 5–12 mg CO2 L−1), probably due to the differences in pH. Concentrations of dissolved Fe increased over the course of the study, possibly due to the reduced water exchange towards the end of the experiment. Overall, high CO2 levels did not have any significant impact on the physico-chemical properties of water under the conditions of this study. The water exchange rate (39% of system water vol. d−1) and unit processes appeared to produce good water quality because all elements measured herein were within safe recommended limits for salmonids.Effect of CO2 on elemental concentrations in recirculating aquaculture system tanksacceptedVersio

    Trace elements and polychlorinated biphenyls (PCBs) in terrestrial compartments of Svalbard, Norwegian Arctic

    Get PDF
    Despite being a remote location, the Arctic is a major receptor for anthropogenic pollution transported from the mid-latitudes. Vegetation and underlying organic soils in the Norwegian Arctic, Svalbard were used to study the occurrences of polychlorinated biphenyls (PCBs) and trace elements. In this study, current concentrations of PCBs and trace elements, namely, Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, S, Sb, U and Zn in the terrestrial compartments of Svalbard are presented. Samples were collected from Adventdalen near Longyearbyen and from areas in proximity to Ny-Ålesund. There was significant variability in soil organic matter (SOM) among the soils analysed (5.0%–72.1%), with the highest values detected in Ny-Ålesund. The concentrations of Al, As, Cr Cu, Fe, Pb and Ni were associated with the geology of the local bedrock. The concentrations of all elements, except for Cd, Hg and Zn, were higher in soils than those in the overlying vegetation layers. Mean concentrations of ∑PCBs were significantly higher in vegetation (6.90 ± 0.81 ng g−1 dw) than the underlying organic soils (3.70 ± 0.36 ng g−1 dw). An inverse correlation of PCBs with the elements originating from the local bedrock indicated that their concentrations were potentially impacted by atmospheric deposition. PCBs and Cd were strongly associated, proposing a potential concomitant source of origin in Svalbard. Concentrations of PCBs and trace elements measured herein were below the proposed guidelines for Norwegian soil quality

    Effect of CO2 on elemental concentrations in recirculating aquaculture system tanks

    Get PDF
    High levels of carbon dioxide (CO2) and subsequent changes in water quality parameters in recirculating aquaculture systems (RAS) are known to impair fish health, welfare and growth performance. A three-month trial was conducted in RAS tanks for Atlantic salmon (Salmo salar) post-smolt, where the effects of CO2 on various water quality parameters (such as pH, redox potential, conductivity, and toxic elements) in brackish water were investigated. The experimental setup contained 18 fish tanks (V = 0.5 m3) with six CO2 treatments (5, 12, 19, 26, 33 and 40 mg CO2 L−1) in triplicate (46 post-smolts tank−1). Initial fish body weight was 70 ± 0.5 g (± SE), final body weight was 232 ± 11 g, and the average growth rate was 1.39% d−1. Fish were fed continuously (approx. 23 h d−1) over satiation (120–140%) during the experiment. Levels of most of the physico-chemical parameters, except for pH (7.65–6.74 for 5–40 mg CO2 L−1 treatments) and redox potential (181.73–195.67 mV for 5–40 mg CO2 L−1 treatments), did not differ between different CO2 treatments. In total, 56 elements were measured, and 32 of these (such as Mg, S, Ca, Cd, Cu, Fe, Pb) were found to be above the limits of detection. None of the elements (except Fe) demonstrated any significant association with CO2 or any of the physico-chemical variables in the current set-up. Fe concentrations were higher in high CO2 treatments (13.0–13.6 μg L−1 for 33–40 mg CO2 L−1) compared with the lower ones (8.7–10.1 μg L−1 for 5–12 mg CO2 L−1), probably due to the differences in pH. Concentrations of dissolved Fe increased over the course of the study, possibly due to the reduced water exchange towards the end of the experiment. Overall, high CO2 levels did not have any significant impact on the physico-chemical properties of water under the conditions of this study. The water exchange rate (39% of system water vol. d−1) and unit processes appeared to produce good water quality because all elements measured herein were within safe recommended limits for salmonids

    Effect of CO2 on elemental concentrations in recirculating aquaculture system tanks

    No full text
    High levels of carbon dioxide (CO2) and subsequent changes in water quality parameters in recirculating aquaculture systems (RAS) are known to impair fish health, welfare and growth performance. A three-month trial was conducted in RAS tanks for Atlantic salmon (Salmo salar) post-smolt, where the effects of CO2 on various water quality parameters (such as pH, redox potential, conductivity, and toxic elements) in brackish water were investigated. The experimental setup contained 18 fish tanks (V = 0.5 m3) with six CO2 treatments (5, 12, 19, 26, 33 and 40 mg CO2 L−1) in triplicate (46 post-smolts tank−1). Initial fish body weight was 70 ± 0.5 g (± SE), final body weight was 232 ± 11 g, and the average growth rate was 1.39% d−1. Fish were fed continuously (approx. 23 h d−1) over satiation (120–140%) during the experiment. Levels of most of the physico-chemical parameters, except for pH (7.65–6.74 for 5–40 mg CO2 L−1 treatments) and redox potential (181.73–195.67 mV for 5–40 mg CO2 L−1 treatments), did not differ between different CO2 treatments. In total, 56 elements were measured, and 32 of these (such as Mg, S, Ca, Cd, Cu, Fe, Pb) were found to be above the limits of detection. None of the elements (except Fe) demonstrated any significant association with CO2 or any of the physico-chemical variables in the current set-up. Fe concentrations were higher in high CO2 treatments (13.0–13.6 μg L−1 for 33–40 mg CO2 L−1) compared with the lower ones (8.7–10.1 μg L−1 for 5–12 mg CO2 L−1), probably due to the differences in pH. Concentrations of dissolved Fe increased over the course of the study, possibly due to the reduced water exchange towards the end of the experiment. Overall, high CO2 levels did not have any significant impact on the physico-chemical properties of water under the conditions of this study. The water exchange rate (39% of system water vol. d−1) and unit processes appeared to produce good water quality because all elements measured herein were within safe recommended limits for salmonids
    corecore