3,500 research outputs found

    Salinity Tolerances of Two Maryland Crayfishes

    Get PDF
    Author Institution: Chesapeake Biological Laboratory, Solomons, Marylan

    Insurer\u27s Duty to Defend

    Get PDF

    Sweet Molly Malone

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5861/thumbnail.jp

    Nutrient and Microbial Movement from Seasonally-Used Septic Systems

    Get PDF
    Unanswered seasonal vacation communities present unique problems for on-site sewage disposal. Seasonal occupancy may promote the transmission of contaminants to groundwater due to incomplete formation of a biological clogging mat in the soil absorption system. Groundwater surrounding three seasonally-used septic systems was monitored to determine the movement and attenuation of nitrogen, phosphorus and two bacterial indicators of human fecal contamination, fecal coliforms and Clostridium perfringens. Nitrate-N concentrations were often three to four-fold greater than the drinking water standard at wells 6 m from the soil absorption systems. Minimal phosphorus migration occurred from these systems. Although more than 1.5 m of unsaturated soil separated the bottom of the soil absorption system from the groundwater, elevated numbers of both bacterial indicators were observed in groundwater at both 2 m and 6 m away from the absorption systems. Biological clogging mats, which are considered to be critical for even distribution of wastewater within a drainfield, were not ground when the systems were excavated at the end of summer occupancy. Siting seasonally-used shoreline septic systems may require improved effluent distribution to achieve wastewater renovation

    The pain experiences of powered wheelchair users

    Get PDF
    Copyright © 2012 Informa UK, Ltd. This is the author's accepted manuscript. The final published article is available from the link below.Purpose: To explore the experience of pain and discomfort in users of electric-powered indoor/outdoor wheelchairs (EPIOCs) provided by a National Health Service. Methods: EPIOC users receiving their chair between February and November 2002 (N=74) were invited to participate in a telephone questionnaire/interview and 64 (aged 1081 years) agreed. Both specific and open-ended questions examined the presence of pain/discomfort, its severity, minimizing and aggravating factors, particularly in relation to the EPIOC and its use. Results: Most EPIOC users described experiences of pain with 17% reporting severe pain. Over half felt their pain was influenced by the wheelchair and few (25%) considered their chair eased their symptoms. The most common strategy for pain relief was taking medication. Other self-help strategies included changing position, exercise and complementary therapies. Respondents emphasized the provision of backrests, armrests, footrests and cushions which might alleviate or exacerbate pain, highlighting the importance of appropriate assessment for this high dependency group. Conclusions: Users related pain to their underlying medical condition, their wheelchair or a combination of the two. User feedback is essential to ensure that the EPIOC meets health needs with minimal pain. This becomes more important as the health condition of users changes over time

    Photooxidation of 2-methyl-3-buten-2-ol (MBO) as a potential source of secondary organic aerosol

    Get PDF
    2-Methyl-3-buten-2-ol (MBO) is an important biogenic hydrocarbon emitted in large quantities by pine forests. Atmospheric photooxidation of MBO is known to lead to oxygenated compounds, such as glycolaldehyde, which is the precursor to glyoxal. Recent studies have shown that the reactive uptake of glyoxal onto aqueous particles can lead to formation of secondary organic aerosol (SOA). In this work, MBO photooxidation under high- and low-NO_x conditions was performed in dual laboratory chambers to quantify the yield of glyoxal and investigate the potential for SOA formation. The yields of glycolaldehyde and 2-hydroxy-2-methylpropanal (HMPR), fragmentation products of MBO photooxidation, were observed to be lower at lower NO_x concentrations. Overall, the glyoxal yield from MBO photooxidation was 25% under high-NO_x and 4% under low-NO_x conditions. In the presence of wet ammonium sulfate seed and under high-NO_x conditions, glyoxal uptake and SOA formation were not observed conclusively, due to relatively low (<30 ppb) glyoxal concentrations. Slight aerosol formation was observed under low-NO_x and dry conditions, with aerosol mass yields on the order of 0.1%. The small amount of SOA was not related to glyoxal uptake, but is likely a result of reactions similar to those that generate isoprene SOA under low-NO_x conditions. The difference in aerosol yields between MBO and isoprene photooxidation under low-NO_x conditions is consistent with the difference in vapor pressures between triols (from MBO) and tetrols (from isoprene). Despite its structural similarity to isoprene, photooxidation of MBO is not expected to make a significant contribution to SOA formation

    Temperature Dependence of the Electron Diffusion Coefficient in Electrolyte-Filled TiO2

    Get PDF
    The temperature and photoexcitation density dependences of the electron transport dynamics in electrolytefilled mesoporous TiO2 nanoparticle films were investigated by transient photocurrent measurements. The thermal activation energy of the diffusion coefficient of photogenerated electrons ranged from 0.19–0.27 eV, depending on the specific sample studied. The diffusion coefficient also depends strongly on the photoexcitation density; however, the activation energy has little, if any, dependence on the photoexcitation density. The light intensity dependence can be used to infer temperature-independent dispersion parameters in the range 0.3–0.5. These results are inconsistent with the widely used transport model that assumes multiple trapping of electrons in an exponential conduction-band tail. We can also exclude a model allowing for widening of a band tail with increased temperature. Our results suggest that structural, not energetic, disorder limits electron transport in mesoporous TiO2. The analogy between this material and others in which charge transport is limited by structural disorder is discussed
    corecore