85 research outputs found
Unravelling the evolutionary history of kisspeptin
Experiments in sea cucumbers reveal how the physiological responses regulated by a neuropeptide called kisspeptin have evolved
Natural sea water and artificial sea water are not equivalent in plastic leachate contamination studies
This is the final version. Available on open access from F1000Research via the DOI in this recordData availability:
Figshare: “Extended data for Natural sea water and artificial
sea water are not equivalent in plastic leachate contamination
studies”, https://doi.org/10.6084/m9.figshare.2512706943.
This project contains the following underlying data:
- Chemical analysis 1 spreadsheet data
- Raw, unedited, uncropped images
- Rebuttal chemical analysis of leachates (Chemical
analysis 2)
Data are available under the terms of the Creative Commons
Attribution 4.0 International license (CC-BY 4.0)[version 2; peer review: 1 approved, 1 approved with reservations]Background
Plastic contamination is one of the concerns of our age. With more than 150 million tons of plastic floating in the oceans, and a further 8 million tons arriving to the water each year, in recent times the scientific community has been studying the effects these plastics have on sea life both in the field and with experimental approaches. Laboratory based studies have been using both natural sea water and artificial sea water for testing various aspects of plastic contamination, including the study of chemicals leached from the plastic particles to the water. We set out to test this equivalence, looking at the leaching of heavy metals form plastic particles.
Methods
We obtained leachates of PVC plastic pre-production nurdles both in natural and artificial sea water and determined the elements in excess from untreated water by Inductively coupled plasma – optical emission spectrometry. We then used these different leachates to assess developmental success in the tunicate Ciona intestinalis by treating fertilised eggs through their development to hatched larvae.
Results
Here we report that chemical analysis of PVC plastic pre-production pellet leachates shows a different composition in natural and artificial sea water. We find that the Zn leaching from the plastic particles is reduced up to five times in artificial sea water, and this can have an effect in the toxicological studies derived. Indeed, we observe different effects in the development of C. intestinalis when using leachates in natural or artificial sea water. We also observe that not all artificial sea waters are suitable for studying the development of the tunicarte C. intestinalis.
Conclusions
Our results show that, at least in this case, both types of water are not equivalent to produce plastic leachaetes and suggest that precaution should be taken when conclusions are derived from results obtained in artificial sea water.European Union Horizon 202
Plastic leachate-induced toxicity during sea urchin embryonic development: Insights into the molecular pathways affected by PVC
This is the final version. Available on open access from Elsevier via the DOI in this recordData availability:
Data will be made available on request.Microplastics are now polluting all seas and, while studies have found numerous negative interactions between plastic pollution and marine animals, the effects on embryonic development are poorly understood. A potentially important source of developmental ecotoxicity comes from chemicals leached from plastic particles to the marine environment. Here we investigate the effects of leachates from new and beach-collected pellets on the embryonic and larval development of the sea urchin Strongylocentrotus purpuratus and demonstrate that exposure of developing embryos to these leachates elicits severe, consistent and treatment-specific developmental abnormalities including radialisation of the embryo and malformation of the skeleton, neural and immune cells. Using a multi-omics approach we define the developmental pathways disturbed upon exposure to PVC leachates and provide a mechanistic view that pinpoints cellular redox stress and energy production as drivers of phenotypic abnormalities following exposure to PVC leachates. Analysis of leachates identified high concentrations of zinc that are the likely cause of these observed defects. Our findings point to clear and specific detrimental effects of marine plastic pollution on the development of echinoderms, demonstrating that chemicals leached from plastic particles into sea water can produce strong developmental abnormalities via specific pathways, and therefore have the potential to impact on a wide range of organisms.Human Frontiers Science ProgramEuropean Union Horizon 202
Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity
The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à -brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages. © 2013 Rogers et al
Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression
BACKGROUND: Gene expression is regulated mainly by transcription factors (TFs) that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS) using position weight matrices (PWMs) that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions. RESULTS: We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI) against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster), we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI. CONCLUSION: Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1) those that show TFBS clustered in promoters associated with CGI, and (2) those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in regulatory regions
Genomic characterization of a repetitive motif strongly associated with developmental genes in Drosophila
BACKGROUND: Non-coding DNA represents a high proportion of all metazoan genomes. Although an undetermined fraction of this DNA may be considered devoid of any function, it also contains important information residing in specific cis-regulatory sequences. RESULTS: We report a 27 bp motif that is overrepresented within the fly genome. This motif does not show any significant similarity with transposon sequences and is strongly associated with genes involved in development and/or signal transduction. The 27 bp motif is preferentially located within introns, and has a tendency to be present in multiple copies around genes. Furthermore, it is often found embedded in known non-coding regulatory regions. The regulatory network defined by this motif is partially shared in D. pseudoobscura. CONCLUSION: We have identified a 27 bp cis-regulatory sequence widely distributed within the Drosophila genome in association with developmental genes. This motif may be very useful towards the annotation of functional regulatory regions within the Drosophila genome and the construction of regulatory networks of Drosophila development
Analysis of the P. lividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes
Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement
Genome-Wide Analyses of Nkx2-1 Binding to Transcriptional Target Genes Uncover Novel Regulatory Patterns Conserved in Lung Development and Tumors
The homeodomain transcription factor Nkx2-1 is essential for normal lung development and homeostasis. In lung tumors, it is considered a lineage survival oncogene and prognostic factor depending on its expression levels. The target genes directly bound by Nkx2-1, that could be the primary effectors of its functions in the different cellular contexts where it is expressed, are mostly unknown. In embryonic day 11.5 (E11.5) mouse lung, epithelial cells expressing Nkx2-1 are predominantly expanding, and in E19.5 prenatal lungs, Nkx2-1-expressing cells are predominantly differentiating in preparation for birth. To evaluate Nkx2-1 regulated networks in these two cell contexts, we analyzed genome-wide binding of Nkx2-1 to DNA regulatory regions by chromatin immunoprecipitation followed by tiling array analysis, and intersected these data to expression data sets. We further determined expression patterns of Nkx2-1 developmental target genes in human lung tumors and correlated their expression levels to that of endogenous NKX2-1. In these studies we uncovered differential Nkx2-1 regulated networks in early and late lung development, and a direct function of Nkx2-1 in regulation of the cell cycle by controlling the expression of proliferation-related genes. New targets, validated in Nkx2-1 shRNA transduced cell lines, include E2f3, Cyclin B1, Cyclin B2, and c-Met. Expression levels of Nkx2-1 direct target genes identified in mouse development significantly correlate or anti-correlate to the levels of endogenous NKX2-1 in a dosage-dependent manner in multiple human lung tumor expression data sets, supporting alternative roles for Nkx2-1 as a transcriptional activator or repressor, and direct regulator of cell cycle progression in development and tumors
Development of the Bi-Partite Gal4-UAS System in the African Malaria Mosquito, Anopheles gambiae
Functional genetic analysis in Anopheles gambiae would be greatly improved by the development of a binary expression system, which would allow the more rapid and flexible characterisation of genes influencing disease transmission, including those involved in insecticide resistance, parasite interaction, host and mate seeking behaviour. The Gal4-UAS system, widely used in Drosophila melanogaster functional genetics, has been significantly modified to achieve robust application in several different species. Towards this end, previous work generated a series of modified Gal4 constructs that were up to 20 fold more active than the native gene in An. gambiae cells. To examine the Gal4-UAS system in vivo, transgenic An. gambiae driver lines carrying a modified Gal4 gene under the control of the carboxypeptidase promoter, and responder lines carrying UAS regulated luciferase and eYFP reporter genes have been created. Crossing of the Gal4 and UAS lines resulted in progeny that expressed both reporters in the expected midgut specific pattern. Although there was minor variation in reporter gene activity between the different crosses examined, the tissue specific expression pattern was consistent regardless of the genomic location of the transgene cassettes. The results show that the modified Gal4-UAS system can be used to successfully activate expression of transgenes in a robust and tissue specific manner in Anopheles gambiae. The midgut driver and dual reporter responder constructs are the first to be developed and tested successfully in transgenic An. gambiae and provide the basis for further advancement of the system in this and other insect species
- …