89 research outputs found

    Rational design of split gene vectors to expand the packaging capacity of adeno-associated viral vectors

    Get PDF
    "December 2007"The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.Vita.Thesis (Ph. D.) University of Missouri-Columbia 2007.Adeno associated viruses (AAV) have recently been demonstrated as a very promising gene delivery vehicle. But the limited packaging capacity of AAV vectors (4̃.7kb) hinders their application for diseases involving large genes such as those responsible for Duchenne muscular dystrophy and cystic fibrosis. To overcome this hurdle, the trans-splicing and overlapping dual vector methods were developed to expand the packaging capacity of AAV. It has been demonstrated that certain expression limiting barriers affect transduction from these dual vectors. The trans-splicing method requires an optimal gene splitting site and the overlapping method requires a highly recombinogenic domain in the middle of the gene for high levels of transduction. To overcome these limitations of dual vectors, we developed a novel transsplicing/ overlapping hybrid vector system that can efficiently reconstitute any large gene. The experimental data demonstrate that the hybrid vector system improves gene expression compared to the traditional dual vectors. The study also demonstrates that the rationally designed transsplicing AAV vectors can be successfully used for body-wide gene delivery. Taken together, this study outlines the considerations to be taken into account for rational design of split gene vectors that would be capable of efficient transgene expression.Includes bibliographical reference

    AAV Serotype Influences Gene Transfer in Corneal Stroma \u3cem\u3ein vivo\u3c/em\u3e

    Get PDF
    This study evaluated the cellular tropism and relative transduction efficiency of three AAV serotypes, AAV6, AAV8 and AAV9, for corneal gene delivery using mouse cornea in vivo and donor human cornea ex vivo. The AAV6, AAV8 and AAV9 serotypes having AAV2 plasmid encoding for alkaline phosphatase (AP) gene were generated by transfecting HEK293 cell line with pHelper, pARAP4 and pRep/Cap plasmids. Viral vectors (109 vg/μl) were topically applied onto mouse cornea in vivo and human cornea ex vivo after removing the epithelium. Human corneas were processed for transgene delivery at day 5 after viral vector application. Mouse corneas were harvested at 4, 14 and 30 days after vector application for AP staining. Transduction efficiency was calculated by quantifying pixels of AP-stained area using Image J software and also confirmed by functional AP enzyme activity in the corneal lysates. Cellular toxicity of the three AAV serotypes was tested with TUNEL assay. Inflammatory response was detected by immunostaining for CD11b and F4/80. All three AAV serotypes successfully transduced mouse and human corneas. The order of transduction efficiency was AAV9\u3eAAV8\u3eAAV6. The transduction efficiency of AAV9 was 1.1–1.4 fold higher (p\u3e0.05) as compared to AAV8 and 3.5–5.5 fold higher (p\u3c0.01) as compared to AAV6. The level of transgene expression for all the three serotypes was greater at 14 days compared to 4 days and this high level of transgene expression was maintained up to the tested time point of 30 days. Corneas exposed to any of the three AAV serotypes did not show significant TUNEL positive cells or any inflammatory response as tested by CD11b or F4/80 staining suggesting that tested AAV serotypes do not induce cell death or inflammation and are safe for corneal gene therapy

    Targeted AAV5-Smad7 gene therapy inhibits corneal scarring in vivo.

    Get PDF
    Corneal scarring is due to aberrant activity of the transforming growth factor β (TGFβ) signaling pathway following traumatic, mechanical, infectious, or surgical injury. Altered TGFβ signaling cascade leads to downstream Smad (Suppressor of mothers against decapentaplegic) protein-mediated signaling events that regulate expression of extracellular matrix and myogenic proteins. These events lead to transdifferentiation of keratocytes into myofibroblasts through fibroblasts and often results in permanent corneal scarring. Hence, therapeutic targets that reduce transdifferentiation of fibroblasts into myofibroblasts may provide a clinically relevant approach to treat corneal fibrosis and improve long-term visual outcomes. Smad7 protein regulates the functional effects of TGFβ signaling during corneal wound healing. We tested that targeted delivery of Smad7 using recombinant adeno-associated virus serotype 5 (AAV5-Smad7) delivered to the corneal stroma can inhibit corneal haze post photorefractive keratectomy (PRK) in vivo in a rabbit corneal injury model. We demonstrate that a single topical application of AAV5-Smad7 in rabbit cornea post-PRK led to a significant decrease in corneal haze and corneal fibrosis. Further, histopathology revealed lack of immune cell infiltration following AAV5-Smad7 gene transfer into the corneal stroma. Our data demonstrates that AAV5-Smad7 gene therapy is relatively safe with significant potential for the treatment of corneal disease currently resulting in fibrosis and impaired vision

    Novel Combination BMP7 and HGF Gene Therapy Instigates Selective Myofibroblast Apoptosis and Reduces Corneal Haze In Vivo.

    Get PDF
    PurposeWe tested the potential of bone morphogenic protein 7 (BMP7) and hepatocyte growth factor (HGF) combination gene therapy to treat preformed corneal fibrosis using established rabbit in vivo and human in vitro models.MethodsEighteen New Zealand White rabbits were used. Corneal fibrosis was produced by alkali injury. Twenty-four hours after scar formation, cornea received topically either balanced salt solution (BSS; n = 6), polyethylenimine-conjugated gold nanoparticle (PEI2-GNP)-naked plasmid (n = 6) or PEI2-GNP plasmids expressing BMP7 and HGF genes (n = 6). Donor human corneas were used to obtain primary human corneal fibroblasts and myofibroblasts for mechanistic studies. Gene therapy effects on corneal fibrosis and ocular safety were evaluated by slit-lamp microscope, stereo microscopes, quantitative real-time PCR, immunofluorescence, TUNEL, modified MacDonald-Shadduck scoring system, and Draize tests.ResultsPEI2-GNP-mediated BMP7+HGF gene therapy significantly decreased corneal fibrosis in live rabbits in vivo (Fantes scale was 0.6 in BMP7+HGF-treated eyes compared to 3.3 in -therapy group; P 104 gene copies per microgram DNA of BMP7 and HGF genes. The recombinant HGF rendered apoptosis in corneal myofibroblasts but not in fibroblasts. Localized topical BMP7+HGF therapy showed no ocular toxicity.ConclusionsLocalized topical BMP7+HGF gene therapy treats corneal fibrosis and restores transparency in vivo mitigating excessive healing and rendering selective apoptosis in myofibroblasts

    Rap1 regulates hematopoietic stem cell survival and affects oncogenesis and response to chemotherapy

    Get PDF
    Khattar, E., Maung, K.Z.Y., Chew, C.L. et al. Rap1 regulates hematopoietic stem cell survival and affects oncogenesis and response to chemotherapy. Nat Commun 10, 5349 (2019). https://doi.org/10.1038/s41467-019-13082-
    • …
    corecore