204 research outputs found

    A review of current development in natural fiber composites for structural and infrastructure applications

    Get PDF
    Natural fiber composites (NFC) as the name implies is made of natural resources thus possesses environmentally beneficial properties such as biodegradability. With its natural characteristics, NFC is obtaining more attention in recent years in various application including automotive, merchandise, structural and infrastructure. Several studies have shown that NFC can be developed into a load-bearing structural member for applications in structural and infrastructure application. As an engineered material, similar with synthetic fiber composites, the properties of NFC can be tailored to meet certain requirements. The challenge in working with NFC is the large variation in properties and characteristics. The properties of NFC to a large extent influenced by the type of fibers, environmental condition where the plant fibers are sourced and the type of fiber treatments. However, with their unique and wide range of variability, natural fiber composites could emerge as a new alternative engineering material which can substitute the use of synthetic fiber composites

    An investigation on the stiffness of timber sleepers for the design of fibre composite sleepers

    Get PDF
    This paper presents an experimental investigation on timber railway sleepers with a view to select a suitable stiffness and a modulus of elasticity for the design of a fibre composite railway sleeper. Eight full size timber sleepers were tested using a four point bending test arrangement. An overview of existing material for railway sleepers is also presented. Based on the tests, it is concluded that timber sleepers have significant variation in strength and stiffness as can be inferred from the modulus of elasticity (Esleeper) which ranged between approximately 9520 MPa and 27600 MPa. It is desirable to develop a concept fibre composite sleeper within a similar range of modulus of elasticity. Based on the statistical analysis, it is proposed to use the lower tail value that is 12000 MPa as design modulus of elasticity for the fibre composite railway sleeper

    Innovative all composite multi-pultrusion truss system for stressed arch deployable shelters

    Get PDF
    Trusses are one of the successful structural forms that have been utilised, at extended scale, since the nineteen century. Fibre composite materials are relatively new to civil engineering applications. The increased interest in using composites in civil applications can be attributed to advantages when compared to other construction materials that offset their associated costs. Using conventional approaches for truss systems in composite materials can undermine their efficiency. This is mainly due to concentration of stresses at connections which usually govern the truss design. The Military Modular Shelter System (M2S2) initiative is a research project that aims to develop a fibre composite re-deployable arched shelter system with rigid PVC or fabric cladding. The main frames are formed from modular fibre composite panels that are connected and stressed into position by prestressing cables. Different geometries can be obtained using this system by changing the number of panels per frame and the packer sizes between panels. This paper presents the development and testing of innovative fibre composite truss modules that were investigated as part of this project. The truss system is based on using multi-pultrusion sections for the chord and vertical members. Truss bracing is provided by a double skin laminated web. This structure offers many advantages including semi-ductile failure that occurred outside the joint area and ease of manufacturing. In spite of being developed for the M2S2 system, the concept is similarly applicable as a general purpose truss system

    An overview on the application of FRP composites in piling system

    Get PDF
    Traditional pile materials such as steel, concrete and timber have limited service life when used in harsh marine environment. Problems coupled with these piles include deterioration of wood, corrosion of steel and degradation of reinforced concrete. To offset this problem, a relatively new trend in deep foundation industry is to use a fibre reinforced polymer (FRP) composite materials as a substitute in piling system. The fundamental advantages of FRP composites compared to other pile materials include lightweight, high strength and possess resistance against corrosion. However, composite materials face hurdle because they do not have a long track record of use in civil engineering application particularly in piling system. To partly address this obstacle, this paper presents an overview in testing, design, and practice of composite piles. Importance is given to history, material types and properties, structural behaviour, geotechnical performance, and durability of composite piles

    Flexural behaviour of structural fibre composite sandwich beams in flatwise and edgewise positions

    Get PDF
    The flexural behaviour of a new generation composite sandwich beams made up of glass fibre-reinforced polymer skins and modified phenolic core material was investigated. The composite sandwich beams were subjected to 4-point static bending test to determine their strength and failure mechanisms in the flatwise and the edgewise positions. The results of the experimental investigation showed that the composite sandwich beams tested in the edgewise position failed at a higher load with less deflection compared to specimens tested in the flatwise position. Under flexural loading, the composite sandwich beams in the edgewise position failed due to progressive failure of the skin while failure in the flatwise position is in a brittle manner due to either shear failure of the core or compressive failure of the skin followed by debonding between the skin and the core. The results of the analytical predictions and numerical simulations are in good agreement with the experimental results

    Occupational Stress and Organizational Commitment in Private Banks: A Sri Lankan Experience

    Get PDF
    Occupational stress is a pattern of emotional, cognitive, behavioral and psychological reaction to adverse and noxious aspects of work content, work organization and the work environment. It is an adaptive response, mediated by individual characteristics and/or psychological processes that are a consequence of any external action, situation or event that places special physical and/or psychological demands upon a person. It can be affected the commitment of the employees. Thus the present study was conducted to measure the impact of occupational stress on organizational commitment and the relationship between stress and commitment using 291 questionnaires gathered from   employees in private banks at Northern Province of Sri Lanka. Correlation analysis indicated that organizational commitment is positively correlated with the components of occupational stress such as organizational factors, job design, management practices, career development and social stressors except physical environment. Further occupational stress is correlated with continuance type of commitment. Multiple regression analysis showed that occupational stress is contributed to determine the organizational commitment by 33.8% Key words: Occupational Stress, Commitment, Physical factor

    THE EFFECT OF CORE ARCHITECTURE ON THE BEHAVIOUR OF SANDWICH COLUMNS UNDER EDGEWISE COMPRESSION LOADING

    Get PDF
    ABSTRACT Sandwich structures are a form of construction that offers high performance and low-weight. This type of construction became popular by the mid of the twenty century where different metallic faces and core materials were used for the construction of aircrafts and marine vessels. The development of high-strength, high-modulus, light-weight fibres and new forms of core materials has opened a new horizon for sandwich structures. Using sandwich structures for columns was investigated by different researchers. However, none of the located literature reported using strong-weak core (mixed-core) materials in sandwich columns. To investigate the effect of using mixed-core on the column behaviour was investigated by testing five sets of prototype columns under edgewise compression. The column cores were made of PVC low-density foam, end-grain balsa wood or a combination of both materials. The column skins were laminated by using glass/epoxy composites. The test results showed that the mixed-core can lead to having a failure mode that has not been reported previously. This paper presents the experimental work conducted in testing these columns. It highlights the effect of core structure on the failure mode and capacity of the sandwich columns

    Compressive, tensile and thermal properties of epoxy grouts subjected to underwater conditioning at elevated temperature

    Get PDF
    Oil and gas pipes are susceptible to failure initiated by corrosion due to their operating pressure under adverse atmospheric conditions. Repairs, comprising a composite shell assembled around the pipe with a small gap, which is then infilled with grout, are considered a suitable option for corroded pipelines. This paper presents the investigation on the mechanical (compression, tension) properties and glass transition temperatures of two infill grouts, after 1000 hour of hot/wet conditioning. An extended investigation on the moisture absorption behaviour was also carried out, revealing the highest absorption to be about 6% after 2520 hours of immersion. The glass transition temperatures of the grouts are reduced by approximately 20ºC. The results suggest that the grouts underwent significant reduction of strength and stiffness due to hot/wet conditioning when tested at an elevated temperature, compared to room temperature. This reduced strength and stiffness is the result of the grouts being tested in close proximity to their glass transition temperatures

    Effect of elevated in-service temperature on the mechanical properties and microstructure of particulate-filled epoxy polymers

    Get PDF
    In civil engineering applications, epoxy-based polymers are subject to different environmental conditions including in-service temperature, which might accelerate their degradation and limit their application ranges. Recently, different particulate fillers were introduced to enhance the mechanical properties and reduce the cost of epoxy-based polymers. This paper addresses the effect of in-service elevated temperature (from room temperature to 80o C) in particulate-filled epoxy based resin containing up to 60% by volume of fire retardant and fly ash fillers through a deep understanding of the microstructure and analysis of their mechanistic response. An improvement in the retention of mechanical properties at in-service elevated temperature was achieved by increasing the percentages of fillers. The retention of compressive and split tensile strength at 80o C for the mix containing 60% fillers was 72% and 52%, respectively, which was significantly higher than the neat epoxy. Thermo-dynamic analysis showed an increase in glass transition temperature with the inclusion of fillers, while these mixes also experienced less weight loss compared to neat epoxy, indicating better thermal stability. Scanning electron microscopy images showed the formation of dense microstructures for particulate-filled epoxy based resin at elevated temperatures. This indicates that the particulate filled epoxy resin exhibits better engineering properties at in-service elevated temperatures, increasing their durability and therefore their suitability for civil engineering applications. A simplified prediction equation based on power function was proposed and showed a strong correlation to the experimental compressive and splitting tensile strength at different levels of in-service elevated temperature
    corecore