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ABSTRACT 
 
Sandwich structures are a form of construction that offers high performance and low-weight. This type of 
construction became popular by the mid of the twenty century where different metallic faces and core materials 
were used for the construction of aircrafts and marine vessels. The development of high-strength, high-modulus, 
light-weight fibres and new forms of core materials has opened a new horizon for sandwich structures.  
 
Using sandwich structures for columns was investigated by different researchers. However, none of the located 
literature reported using strong-weak core (mixed-core) materials in sandwich columns. To investigate the effect 
of using mixed-core on the column behaviour was investigated by testing five sets of prototype columns under 
edgewise compression. The column cores were made of PVC low-density foam, end-grain balsa wood or a 
combination of both materials. The column skins were laminated by using glass/epoxy composites. The test 
results showed that the mixed-core can lead to having a failure mode that has not been reported previously. 
 
This paper presents the experimental work conducted in testing these columns. It highlights the effect of core 
structure on the failure mode and capacity of the sandwich columns. 
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INTRODUCTION  
 
The sandwich form of construction is a relatively new system. The Second-World-War “Mosquito” aircraft is 
often referred to as the first major structure that incorporated sandwich panels. However, some records refer to 
Fairbairn (1849) and even as early as Leonardo da Vinci (Allen, 1969). Sandwich structures started to gain 
popularity by the middle of the 20th century when different metallic faces and core materials were used for the 
construction of aircrafts and marine vessels. This popularity is attributed to its characteristics of light-weight, 
high stiffness, and excellent absorption of mechanical and sound energy. The development of high-strength, 
high-modulus, light-weight fibres and new forms of core materials has opened a new horizon for sandwich 
structures where the structural properties can be fully adapted to the design requirements. In addition, the 
orthotropic nature of the composite materials, along with the flexibility in selecting the fibre types and 
architecture, can significantly increase the buckling capacity of the sandwich structure (Librescu and Hause, 
2000). 
 
The first published paper, which dealt with in-plane compression loads, was by Marguerre (1944). As metallic 
skins and cores were the original materials used for sandwich structures, first investigations had focused on the 
behaviour of this form of sandwich structure. During the 1950s, the US Forest Products Laboratory (USFPL) 
was the primary group in developing analysis and design methods for sandwich structures. Their effort led to 
publishing the military design handbook MIL-HDBK-23 (Anon, 1955) that was continuously updated until being 
cancelled in 1988. For many years, Allen (1969) and Plantema (1966) were the most popular references that 
provided simplified and practical approaches to the analysis and design of sandwich structures. 
 
Four failure modes for sandwich columns (two global and two local) are presented in the MIL-HDBK-23 (Anon, 
1955) and found in many references such as Vinson (1999), and Fleck and Sridhar (2002). In addition to the 
overall buckling of the column (Figure 1a), shear crimping failure (Figure 1b) is another form of general overall 
buckling in which the wavelength of the buckles is very small, because of the low core-shear modulus. The 
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crimping of the sandwich occurs suddenly and usually causes the core to fail in shear at the crimp; it may also 
cause shear failure in the bond between the facing and the core. It is important to note that the critical skin stress, 
where core shear instability can occur, is independent of the column dimensions. However, it is related to the 
core and skin properties and the boundary conditions (Vinson, 1999). If the core is of cellular structure, 
honeycomb, it is possible for the facings to buckle or dimple into the spaces between core walls or corrugations 
as shown in Figure 1c. Wrinkling is the fourth form of failure (Figure 1d). It can occur if the skin buckles inward 
or outward, depending on the flat-wise compressive strength of the core relative to the flat-wise tensile strength 
of the bond between the facing and the core. If the bond between the facing and the core is strong, facings can 
wrinkle and cause tension failure in the core. This simulates plate-on-elastic foundation. The wrinkling load 
depends upon the elasticity and strength of the foundation system, namely, the core and the bond between the 
facing and the core. Since the facing is never perfectly flat, the wrinkling load will also depend upon the initial 
eccentricity of the facing or original waviness (Allen, 1969).  
 
Face plastic micro-buckling failure is a shear buckling instability of the face fibres due to large shear strains in 
the face matrix (Fleck, 1997). The shear yield strength of the composite and the initial fibre misalignment angle 
are the main factors controlling the micro-buckling compressive strength, Argon (1972) and Budiansky (1983). 
The compression strength is sensitive to the degree of imperfection (fibre waviness) and the fibre mis-alignment 
with the loading direction. For sandwich columns, plastic micro-buckling of the skins is the most probable 
failure mode (Fleck and Sridhar, 2002). It occurs when the axial compressive stresses in the skins attains the 
plastic micro-buckling strength. Progressive end-crushing (Figure 2) was another failure mode that was reported 
by Mamalis et al (2005). The end-crushing mode of failure can occur in short columns with high-density core 
material of non-brittle behaviour (typically used in crushing application). 
 
In all the reviewed literature, the concept of using mixed-core for sandwich columns could not be located. 
However, this concept was used in manufacturing the fuselage of the Vultee BT-15 aircraft (Rheinfrank and 
Norman, 1944). Using mixed-core materials in sandwich columns can influence their capacity and failure mode. 
A testing program was conducted in the Centre of Excellence in Engineered Fibre Composites – University of 
Southern Queensland to highlight the effect of using mixed-core on the failure mode and capacity of sandwich 
columns. This paper presents the experimental work conducted in testing five column sets, where the ratios of 
the mixed-cores changed from the weak core to the strong core. 
 

Test Specimens and Material Properties 
 
Prototype columns of 550mmL (460mm clear height) x 120mmW were manufactured, with the cross-section 
layout as shown in Figure 3. Column skins were manufactured from Hyrez 202 Bisphenol-A epoxy resin system 
with polyamine-based hardener (Rogers, 2004) and three layers of uni-glass fibres (450gsm). The skin properties 

Figure 1. Modes of failure in sandwich panels under edge load - MIL-HDBK-23 (Anon, 1955) 

a) b) c) d)

Figure 2. Progressive end-crushing failure mode for sandwich columns (Mamalis et al, 2005) 
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were characterised by testing coupon specimens in tension (ISO527-4-1993) and compression (ISO14126-1999). 
These testing were conducted on both of the two principal directions of the laminate (1-1 & 2-2). The glass 
content of the laminated skins was 41.4% (ISO1172-1999). Summary of the skin properties are shown in Table 1.  
 
SB100 end-grain balsa (core1, Figure 3) and Klegecell-R45 PVC closed-cell foam (core2, Figure 3) were used 
for the column cores with the widths and shear modulus shown in Table 2. The column cores were of 20mm 
thickness. Two methods were used to assess the shear modulus of the core materials. The first method was the 
flexure method (ASTM C393-00) while the second was the developed rocket test method (Figure 4). The rocket 
test method was developed after difficulties in determining the SB100 shear modulus by using the ASTM 
method. The Rocket test specimens were manufactured from loading members of 250mmL (made of pultrusion 
section SHS50x50x5), core material specimens (two pieces cut to dimensions of 200mmL x 50mmW x 
20mmThk), and HPR26 thixotropic-toughened epoxy adhesive system. After assembling each specimen on a 
special jig, specimens were left to cure for 24 hours at ambient temperature. The test specimens were then post-
cured at 60˚C for 2 hours with 1 hour ramp to ensure obtaining sufficient stiffness of the adhesive layers. Excess 
glue was then removed by sanding and the specimens were squared to ensure loads applied parallel to the core 
plane. After conditioning the specimens for 24 hours in 23˚C temperature and 50% relative humidity, they were 
tested as shown in Figure 4b. The applied loads was recorded by the MTS Alliance RT/10 testing machine with 
the relative movement between the middle and outer pultrusions recorded by laser extensometer at acquisition 
rate of 200Hz. The shear modulus was calculated by using Equation 1 with typical load-deflection curves shown 
in Figure 5. More clearly shown in Table 2, the estimated shear modulus of the SB100 core (using ASTM C393-
00) was much less than that obtained from the Rocket test and the product data sheets. However, for R45 foam, 
all the figures were close. This can suggest that for more rigid cores, Rocket testing can be good testing 
procedures to assess the shear modulus of the core. 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. Skin laminates material properties 

 
ISO1172-

1996 
ISO527-4-1993  
Tensile Properties (MPa) in  

ISO14126-1999  
Compression Prosperities (MPa) in  

Thk/ply Glass  1-1 direction 2-2 direction 1-1 direction 2-2 direction 
(mm) Content % E σ E σ E σ E σ 
0.697 41.40% 18607 363.2 5707 24.3 24519 360.7 7939 96.65 

 
Table 2. Mixed-core column geometries 
 Core Width (mm) Core Shear Modulus (MPa) 
Column b1(SB100) b2(R45) ASTM C393-00 Rocket Data sheets 
T01 0 120 16.58 14.99 14.00 
T02 15 90 25.45   
T03 20 80 25.09   
T04 30 60 29.88   
T05 60 0 33.73 159.00 159.00 

 

Lb
StG

2
=       (1) 

Where,   
 G: Core material shear modulus 
 S: Initial linear slope of the load deflection curve 
 t, L & b: Average core thickness, length & width (of both sides) 

Figure 3. Cross-section of the mixed-core column 
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Test Set-up 
 
Column tests were conducted on Shimadzu CSP-300 machine. Clamped-end restraints were implemented using 
a special fixture attached to the machine ram (Figure 6) with applied loads recorded by 222kN loading cell, 
vertical displacement recorded using string pot, and horizontal displacement recorded using LVDT while strain 
gauges were attached at the mid-height of the column at both faces. All data were collected by System 5000 
data-acquisition system and recorded on a standard PC at 10Hz. Displacement-controlled loads were applied at a 
rate of 0.5mm/min. 
 
Test Results and Discussions 
 
Generally, the test results were consistent for each set of columns. Increasing the SB100 core percentage 
continuously increased the column capacity with slight increase in the column weight. Figure 7 show the relative 
capacity and stiffness of the tested columns to column T01 with the X-axis representing the percentage of the 
SB100 in the core. As expected for sandwich columns, the core material had minor effect on the column stiffness. 
It was observed that the load-deflection and the strain-load curves were linear until failure with complete loss of 
strength once reached the ultimate capacity. At failure, the ratio of the minimum strain to the maximum strain 
recorded at the two skins ranged from 70%-80% for the different columns.  
 
A few failure modes were observed. For single core columns, T01 column failed in global buckling mode 
(Figure 8a) while T05 column failed in two modes, skin micro-buckling (Figure 8b) and shear crimping (Figure 
8c). In spite of having two modes of failure, T05 specimens failed at close margin of load, within 7% of the 
average capacity. For mixed-core columns, two failure mode combinations were observed. For columns with 
high percentage of SB100 (T04), shear crimping dominated the failure mode (Figure 9a), while for T02 and T03, 
face wrinkling dominated the failure mode (Figure 9b). In addition to the dominant failure, shear failure was 
observed in the column skins along the lines separating the components of the core materials. The shear 

Figure 4. Characterising core materials a) ASTM C393-00 3-point test, b) Rocket test 

a) b)
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Figure 6. Columns test set-up 
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Figure 5. load-deflection curves for the core materials 
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crimping failure was accompanied by debonding of the skins from the core material, while the face wrinkling 
was accompanied by skin micro-buckling at the SB100 cores and shear failure in the R45 cores (Figure 9). 
The behaviour of T01 was very well predicted. However, the failure of T05 in shear crimp mode was surprising 
due to the high shear modulus of the SB100 (Table 2). The estimated micro-buckling failure stress of T05 was 
259MPa, which was significantly less than the predicted value obtained during the characterisation program 
(Table 1). The combined failure modes were found unique for mixed-core columns.  
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Figure 8. Single-core columns failure modes (a) T01 buckling, (b) T05-skin micro-buckling, (c) T05-shear crimping 

Shear crimping  

(b) (c) 

Figure 9. Mixed-core columns failure modes (a) shear crimping, (b) Face wrinkling and skin micro-buckling 
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Currently, further investigations are undertaken to explain having the different modes of failure in balsa-core 
columns. In addition, the concept of using mixed-core needs further research. This concept can provide load 
redundancy, by controlling the failure mode, to avoid the sudden failure observed in sandwich columns. 
Furthermore, it can provide tools to optimise the column behaviour. 
 
CONCLUSIONS 
 
Experimental data for the tested sandwich columns were presented in this paper. The tested columns had similar 
skin architecture and testing layout with different core contents. The column cores were made of PVC low-
density foam, end-grain balsa wood or a combination of both materials. Increasing the core shear modulus 
shifted the single-core column failure modes from global buckling (PVC foam core). Single-core balsa columns 
failed in two different modes, at close ultimate capacity. The first failure mode was due to shear crimping. The 
second failure mode was due to face micro-buckling at the bottom end of the column. There was no clear 
explanation why this column set had these two modes of failure and why it failed at lower load than expected.  
 
The usage of mixed-core concept complicated the column failure by introducing a combination of failure modes 
for these columns. For columns with high content of balsa, shear crimping dominated the column failure. 
However, face wrinkling dominated the columns with high percentage of low-density PVC core. In both cases, 
shear failure in the skins along the interface between the two core materials was observed. 
 
For rigid core materials, some difficulties were observed in assessing the core shear modulus, by using existing 
standard. The proposed Rocket test procedures showed potential of overcoming these difficulties. 
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