103 research outputs found

    EEG-representational geometries and psychometric distortions in approximate numerical judgment

    Get PDF
    When judging the average value of sample stimuli (e.g., numbers) people tend to either over- or underweight extreme sample values, depending on task context. In a context of overweighting, recent work has shown that extreme sample values were overly represented also in neural signals, in terms of an anti-compressed geometry of number samples in multivariate electroencephalography (EEG) patterns. Here, we asked whether neural representational geometries may also reflect a relative underweighting of extreme values (i.e., compression) which has been observed behaviorally in a great variety of tasks. We used a simple experimental manipulation (instructions to average a single-stream or to compare dual-streams of samples) to induce compression or anti-compression in behavior when participants judged rapid number sequences. Model-based representational similarity analysis (RSA) replicated the previous finding of neural anti-compression in the dual-stream task, but failed to provide evidence for neural compression in the single-stream task, despite the evidence for compression in behavior. Instead, the results indicated enhanced neural processing of extreme values in either task, regardless of whether extremes were over- or underweighted in subsequent behavioral choice. We further observed more general differences in the neural representation of the sample information between the two tasks. Together, our results indicate a mismatch between sample-level EEG geometries and behavior, which raises new questions about the origin of common psychometric distortions, such as diminishing sensitivity for larger values

    Oxygen Sensing in Drosophila: Multiple Isoforms of the Prolyl Hydroxylase Fatiga Have Different Capacity to Regulate HIFα/Sima

    Get PDF
    Background: The Hypoxia Inducible Factor (HIF) mediates cellular adaptations to low oxygen. Prolyl-4-hydroxylases are oxygen sensors that hydroxylate the HIF alpha-subunit, promoting its proteasomal degradation in normoxia. Three HIFprolyl hydroxylases, encoded by independent genes, PHD1, PHD2, and PHD3, occur in mammals. PHD2, the longest PHD isoform includes a MYND domain, whose biochemical function is unclear. PHD2 and PHD3 genes are induced in hypoxia to shut down HIF dependent transcription upon reoxygenation, while expression of PHD1 is oxygen-independent. The physiologic significance of the diversity of the PHD oxygen sensors is intriguing. Methodology and Principal Findings: We have analyzed the Drosophila PHD locus, fatiga, which encodes 3 isoforms, FgaA, FgaB and FgaC that are originated through a combination of alternative initiation of transcription and alternative splicing. FgaA includes a MYND domain and is homologous to PHD2, while FgaB and FgaC are shorter isoforms most similar to PHD3. Through a combination of genetic experiments in vivo and molecular analyses in cell culture, we show that fgaB but not fgaA is induced in hypoxia, in a Sima-dependent manner, through a HIF-Responsive Element localized in the first intron of fgaA. The regulatory capacity of FgaB is stronger than that of FgaA, as complete reversion of fga loss-of-function phenotypes is observed upon transgenic expression of the former, and only partial rescue occurs after expression of the latter. Conclusions and Significance: Diversity of PHD isoforms is a conserved feature in evolution. As in mammals, there are hypoxia-inducible and non-inducible Drosophila PHDs, and a fly isoform including a MYND domain co-exists with isoforms lacking this domain. Our results suggest that the isoform devoid of a MYND domain has stronger regulatory capacity than that including this domain.Fil:Acevedo, J.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Centanin, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Dekanty, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Wappner, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Microscopy-BIDS: An Extension to the Brain Imaging Data Structure for Microscopy Data

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a specification for organizing, sharing, and archiving neuroimaging data and metadata in a reusable way. First developed for magnetic resonance imaging (MRI) datasets, the community-led specification evolved rapidly to include other modalities such as magnetoencephalography, positron emission tomography, and quantitative MRI (qMRI). In this work, we present an extension to BIDS for microscopy imaging data, along with example datasets. Microscopy-BIDS supports common imaging methods, including 2D/3D, ex/in vivo, micro-CT, and optical and electron microscopy. Microscopy-BIDS also includes comprehensible metadata definitions for hardware, image acquisition, and sample properties. This extension will facilitate future harmonization efforts in the context of multi-modal, multi-scale imaging such as the characterization of tissue microstructure with qMRI

    Caloric restriction counteracts age-dependent changes in prolyl-4-hydroxylase domain (PHD) 3 expression

    Get PDF
    Caloric restriction remains the most reproducible measure known to extend life span or diminish age-associated changes. Previously, we have described an elevated expression of the prolyl-4-hydroxylase domain (PHD) 3 with increasing age in mouse and human heart. PHDs modulate the cellular response towards hypoxia by regulating the stability of the α-subunit of the transcriptional activator hypoxia inducible factor (HIF). In the present study we demonstrate that elevated PHD3, but not PHD1 or PHD2, expression is not restricted to the heart but does also occur in rat skeletal muscle and liver. Elevated expression of PHD3 is counteracted by a decrease in caloric intake (40% caloric restriction applied for 6 months) in all three tissues. Age-associated changes in PHD3 expression inversely correlated with the expression of the HIF-target gene macrophage migration inhibitory factor (MIF), which has been previously described to be involved in cellular HIF-mediated anti-ageing effects. These data give insight into the molecular consequences of caloric restriction, which influences hypoxia-mediated gene expression via PHD3

    Target gene selectivity of hypoxia-inducible factor-α in renal cancer cells is conveyed by post-DNA-binding mechanisms

    Get PDF
    Inactivation of the von Hippel–Lindau tumour suppressor in renal cell carcinoma (RCC) leads to failure of proteolytic regulation of the α subunits of hypoxia-inducible factor (HIF), constitutive upregulation of the HIF complex, and overexpression of HIF target genes. However, recent studies have indicated that in this setting, upregulation of the closely related HIF-α isoforms, HIF-1α and HIF-2α, have contrasting effects on tumour growth, and activate distinct sets of target genes. To pursue these findings, we sought to elucidate the mechanisms underlying target gene selectivity for HIF-1α and HIF-2α. Using chromatin immunoprecipitation to probe binding to hypoxia response elements in vivo, and expression of chimaeric molecules bearing reciprocal domain exchanges between HIF-1α and HIF-2α molecules, we show that selective activation of HIF-α target gene expression is not dependent on selective DNA-binding at the target locus, but depends on non-equivalent C-terminal portions of these molecules. Our data indicate that post-DNA binding mechanisms that are dissimilar for HIF-1α and HIF-2α determine target gene selectivity in RCC cells
    corecore