29 research outputs found

    Перспективи роботи з іноземними лікарями в системі післядипломної освіти

    Get PDF
    BACKGROUND: Polymer nanoparticles (PNP) are becoming increasingly important in nanomedicine and food-based applications. Size and surface characteristics are often considered to be important factors in the cellular interactions of these PNP, although systematic investigations on the role of surface properties on cellular interactions and toxicity of PNP are scarce. RESULTS: Fluorescent, monodisperse tri-block copolymer nanoparticles with different sizes (45 and 90 nm) and surface charges (positive and negative) were synthesized, characterized and studied for uptake and cytotoxicity in NR8383 and Caco-2 cells. All types of PNP were taken up by the cells. The positive smaller PNP(45) (45 nm) showed a higher cytotoxicity compared to the positive bigger PNP(90) (90 nm) particles including reduction in mitochondrial membrane potential (ΔΨ(m)), induction of reactive oxygen species (ROS) production, ATP depletion and TNF-α release. The negative PNP did not show any cytotoxic effect. Reduction in mitochondrial membrane potential (ΔΨ(m)), uncoupling of the electron transfer chain in mitochondria and the resulting ATP depletion, induction of ROS and oxidative stress may all play a role in the possible mode of action for the cytotoxicity of these PNP. The role of receptor-mediated endocytosis in the intracellular uptake of different PNP was studied by confocal laser scanning microscopy (CLSM). Involvement of size and charge in the cellular uptake of PNP by clathrin (for positive PNP), caveolin (for negative PNP) and mannose receptors (for hydroxylated PNP) were found with smaller PNP(45) showing stronger interactions with the receptors than bigger PNP(90). CONCLUSIONS: The size and surface characteristics of polymer nanoparticles (PNP; 45 and 90 nm with different surface charges) play a crucial role in cellular uptake. Specific interactions with cell membrane-bound receptors (clathrin, caveolin and mannose) leading to cellular internalization were observed to depend on size and surface properties of the different PNP. These properties of the nanoparticles also dominate their cytotoxicity, which was analyzed for many factors. The effective reduction in the mitochondrial membrane potential (ΔΨ(m)), uncoupling of the electron transfer chain in mitochondria and resulting ATP depletion, induction of ROS and oxidative stress likely all play a role in the mechanisms behind the cytotoxicity of these PNP

    Simulation of XPS C1s Spectra of Organic Monolayers by Quantum Chemical Methods

    No full text
    Several simple methods are presented and evaluated to simulate the X-ray photoelectron spectra (XPS) of organic monolayers and polymeric layers by density functional theory (DFT) and second-order Møller–Plesset theory (MP2) in combination with a series of basis sets. The simulated carbon (C1s) XPS spectra as obtained via B3LYP/6-311G­(d,p) or M11/6-311G­(d,p) calculations are in good agreement (average mean error <0.3 eV) with the experimental spectra, and good estimates of C1s spectra can be obtained via <i>E</i><sub>C1s</sub>(exp) = 0.9698<i>E</i><sub>C1s</sub>(theory) + 20.34 (in eV) (B3LYP/6-311G­(d,p)). As a result, the simulated C1s XPS spectra can elucidate the binding energies of the different carbon species within an organic layer and, in this way, greatly aid the assignment of complicated C1s XPS spectra. The paper gives a wide range of examples, including haloalkanes, esters, (thio-)­ethers, leaving groups, clickable functionalities, and bioactive moieties
    corecore