617 research outputs found

    msBP: An R package to perform Bayesian nonparametric inference using multiscale Bernstein polynomials mixtures

    Get PDF
    msBP is an R package that implements a new method to perform Bayesian multiscale nonparametric inference introduced by Canale and Dunson (2016). The method, based on mixtures of multiscale beta dictionary densities, overcomes the drawbacks of PĂłlya trees and inherits many of the advantages of Dirichlet process mixture models. The key idea is that an infinitely-deep binary tree is introduced, with a beta dictionary density assigned to each node of the tree. Using a multiscale stick-breaking characterization, stochastically decreasing weights are assigned to each node. The result is an infinite mixture model. The package msBP implements a series of basic functions to deal with this family of priors such as random densities and numbers generation, creation and manipulation of binary tree objects, and generic functions to plot and print the results. In addition, it implements the Gibbs samplers for posterior computation to perform multiscale density estimation and multiscale testing of group differences described in Canale and Dunson (2016)

    Nonparametric Bayes modeling of count processes

    Get PDF
    Data on count processes arise in a variety of applications, including longitudinal, spatial and imaging studies measuring count responses. The literature on statistical models for dependent count data is dominated by models built from hierarchical Poisson components. The Poisson assumption is not warranted in many applications, and hierarchical Poisson models make restrictive assumptions about over-dispersion in marginal distributions. This article proposes a class of nonparametric Bayes count process models, which are constructed through rounding real-valued underlying processes. The proposed class of models accommodates applications in which one observes separate count-valued functional data for each subject under study. Theoretical results on large support and posterior consistency are established, and computational algorithms are developed using Markov chain Monte Carlo. The methods are evaluated via simulation studies and illustrated through application to longitudinal tumor counts and asthma inhaler usage

    Bayesian multivariate mixed-scale density estimation

    Get PDF
    Although continuous density estimation has received abundant attention in the Bayesian nonparametrics literature, there is limited theory on multivariate mixed scale density estimation. In this note, we consider a general framework to jointly model continuous, count and categorical variables under a nonparametric prior, which is induced through rounding latent variables having an unknown density with respect to Lebesgue measure. For the proposed class of priors, we provide sufficient conditions for large support, strong consistency and rates of posterior contraction. These conditions allow one to convert sufficient conditions obtained in the setting of multivariate continuous density estimation to the mixed scale case. To illustrate the procedure a rounded multivariate nonparametric mixture of Gaussians is introduced and applied to a crime and communities dataset

    Multiscale Bernstein polynomials for densities

    Full text link
    Our focus is on constructing a multiscale nonparametric prior for densities. The Bayes density estimation literature is dominated by single scale methods, with the exception of Polya trees, which favor overly-spiky densities even when the truth is smooth. We propose a multiscale Bernstein polynomial family of priors, which produce smooth realizations that do not rely on hard partitioning of the support. At each level in an infinitely-deep binary tree, we place a beta dictionary density; within a scale the densities are equivalent to Bernstein polynomials. Using a stick-breaking characterization, stochastically decreasing weights are allocated to the finer scale dictionary elements. A slice sampler is used for posterior computation, and properties are described. The method characterizes densities with locally-varying smoothness, and can produce a sequence of coarse to fine density estimates. An extension for Bayesian testing of group differences is introduced and applied to DNA methylation array data

    A nested expectation-maximization algorithm for latent class models with covariates

    Get PDF
    We develop a nested EM routine for latent class models with covariates which allows maximization of the full-model log-likelihood and, differently from current methods, guarantees monotone log-likelihood sequences along with improved convergence rates
    • …
    corecore