617 research outputs found
msBP: An R package to perform Bayesian nonparametric inference using multiscale Bernstein polynomials mixtures
msBP is an R package that implements a new method to perform Bayesian multiscale nonparametric inference introduced by Canale and Dunson (2016). The method, based on mixtures of multiscale beta dictionary densities, overcomes the drawbacks of PĂłlya trees and inherits many of the advantages of Dirichlet process mixture models. The key idea is that an infinitely-deep binary tree is introduced, with a beta dictionary density assigned to each node of the tree. Using a multiscale stick-breaking characterization, stochastically decreasing weights are assigned to each node. The result is an infinite mixture model. The package msBP implements a series of basic functions to deal with this family of priors such as random densities and numbers generation, creation and manipulation of binary tree objects, and generic functions to plot and print the results. In addition, it implements the Gibbs samplers for posterior computation to perform multiscale density estimation and multiscale testing of group differences described in Canale and Dunson (2016)
Nonparametric Bayes modeling of count processes
Data on count processes arise in a variety of applications, including
longitudinal, spatial and imaging studies measuring count responses. The
literature on statistical models for dependent count data is dominated by
models built from hierarchical Poisson components. The Poisson assumption is
not warranted in many applications, and hierarchical Poisson models make
restrictive assumptions about over-dispersion in marginal distributions. This
article proposes a class of nonparametric Bayes count process models, which are
constructed through rounding real-valued underlying processes. The proposed
class of models accommodates applications in which one observes separate
count-valued functional data for each subject under study. Theoretical results
on large support and posterior consistency are established, and computational
algorithms are developed using Markov chain Monte Carlo. The methods are
evaluated via simulation studies and illustrated through application to
longitudinal tumor counts and asthma inhaler usage
Bayesian multivariate mixed-scale density estimation
Although continuous density estimation has received abundant attention in the
Bayesian nonparametrics literature, there is limited theory on multivariate
mixed scale density estimation. In this note, we consider a general framework
to jointly model continuous, count and categorical variables under a
nonparametric prior, which is induced through rounding latent variables having
an unknown density with respect to Lebesgue measure. For the proposed class of
priors, we provide sufficient conditions for large support, strong consistency
and rates of posterior contraction. These conditions allow one to convert
sufficient conditions obtained in the setting of multivariate continuous
density estimation to the mixed scale case. To illustrate the procedure a
rounded multivariate nonparametric mixture of Gaussians is introduced and
applied to a crime and communities dataset
Multiscale Bernstein polynomials for densities
Our focus is on constructing a multiscale nonparametric prior for densities.
The Bayes density estimation literature is dominated by single scale methods,
with the exception of Polya trees, which favor overly-spiky densities even when
the truth is smooth. We propose a multiscale Bernstein polynomial family of
priors, which produce smooth realizations that do not rely on hard partitioning
of the support. At each level in an infinitely-deep binary tree, we place a
beta dictionary density; within a scale the densities are equivalent to
Bernstein polynomials. Using a stick-breaking characterization, stochastically
decreasing weights are allocated to the finer scale dictionary elements. A
slice sampler is used for posterior computation, and properties are described.
The method characterizes densities with locally-varying smoothness, and can
produce a sequence of coarse to fine density estimates. An extension for
Bayesian testing of group differences is introduced and applied to DNA
methylation array data
A nested expectation-maximization algorithm for latent class models with covariates
We develop a nested EM routine for latent class models with covariates which
allows maximization of the full-model log-likelihood and, differently from
current methods, guarantees monotone log-likelihood sequences along with
improved convergence rates
- …