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A nested expectation–maximization algorithm

for latent class models with covariates
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Abstract

We develop a nested em routine for latent class models with covariates which allows maximization of the full–model log-likelihood

and, differently from current methods, guarantees monotone log-likelihood sequences along with improved convergence rates.

Keywords: em algorithm, Latent class model, Multivariate categorical data, Pólya-gamma

1. Introduction

Multivariate categorical data are routinely collected in several fields [e.g. 14]. In these settings, it is

of key interest to characterize the dependence structures in the observed data, and to identify underlying

classes or subpopulations which may explain these patterns of dependence and their changes with external

covariates. Let Yi = (Yi1, . . . , YiJ)⊺ denote the multivariate categorical random variable generating the

observed data yi = (yi1, . . . , yiJ)⊺ ∈ Y = {1, . . . ,K1} × · · · × {1, . . . ,KJ}, for every unit i = 1, . . . , n. Latent

class models with covariates [3, 9, 12] address this goal by assuming the response variables Yi1, . . . , YiJ ,

are conditionally independent given a latent class indicator si ∈ S = {1, . . . ,R}, whose probability mass

function is allowed to change with the covariates xi = (xi1, . . . , xiP)⊺ ∈ X, under a multinomial logistic

regression. Consistent with this assumption, the conditional probability mass function pr(Yi = y | xi) =

pr(Yi1 = y1, . . . , YiJ = yJ | xi) for the multivariate random variable Yi, can be expressed as

pr(Yi = y | xi) =

R
∑

r=1

νr(xi)

J
∏

j=1

π jr(y j) =

R
∑

r=1

exp(x
⊺

i
βr)

∑R
l=1 exp(x

⊺

i
βl)

J
∏

j=1

π jr(y j), for each i = 1, . . . , n, (1)

where νr(xi) = pr(si = r | xi) ∈ (0, 1) is the covariate–dependent probability of class r, whereas π jr(y j) =

pr(Yi j = y j | si = r) ∈ (0, 1) characterizes the probability to observe the category y j for the variable Yi j

in class r. Note also that, consistent with classical multinomial logistic regression, the coefficients vector

βR = (β1R, . . . , βPR)⊺ associated with the last class R is fixed to zero, in order to avoid identifiability issues.

∗Corresponding author

Email addresses: daniele.durante@unibocconi.it (Daniele Durante), canale@stat.unipd.it (Antonio Canale),

tommaso.rigon@phd.unibocconi.it (Tommaso Rigon)

1

http://arxiv.org/abs/1705.03864v5


D. Durante et al. / 00 (2018) 1–13 2

With this choice, x
⊺

i
βr measures the log-odds of belonging to class r instead of class R, when the vector of

covariates is xi. Equation (1) provides an interpretable factorization which allows inference on the class-

specific generative mechanisms underlying the observed data yi and how the latent classes si relate to the

covariates xi. Refer to [3, 9, 12] for a discussion about this class of models, and to [8] for a review on latent

class analysis, including early formulations without covariates [17, 21].

To obtain the above information, it is necessary to estimate β = {β1, . . . ,βR−1} and π = {π j1(y j), . . . , π jR(y j) :

j = 1, . . . , J; y j = 1, . . . ,K j}. This can be accomplished by maximizing the log-likelihood function

ℓ(β, π; y, x) =

n
∑

i=1

log



















R
∑

r=1

νr(xi)

J
∏

j=1

K j
∏

y j=1

π jr(y j)
1(yi j=y j)



















=

n
∑

i=1

log



















R
∑

r=1

exp(x
⊺

i
βr)

∑R
l=1 exp(x

⊺

i
βl)

J
∏

j=1

K j
∏

y j=1

π jr(y j)
1(yi j=y j)



















, (2)

where 1(yi j = y j) is 1 if yi j = y j, and 0 otherwise. However, maximization of (2) is not straightforward due

to the sum inside the logarithm. In fact, although some contributions attempt direct maximization of (2) via

Newton–Raphson [e.g. 13] or simplex algorithms [e.g. 9], more popular implementations [3, 12, 25, 6, 26]

rely on em routines [10]. These strategies leverage a hierarchical specification—equivalent to (1)—which

introduces a latent class variable si ∈ S = {1, . . . ,R} for each i = 1, . . . , n, to obtain

(Yi j | si = r) ∼ categorical(π jr,K j), for any j = 1, . . . , J, (si | xi) ∼ categorical(ν(xi),R), (3)

independently for every unit i = 1, . . . , n. In (3), categorical(ρ,H) denotes the generic categorical random

variable having probability mass function ρ = {ρ1, . . . , ρH} for the H different categories. Hence, consistent

with (3), if s = (s1, . . . , sn) is known, the maximum likelihood estimates for β and π can be easily obtained

by maximizing separately the log-likelihood ℓ1(β; s, x) associated with the multinomial logistic regression

for s1, . . . , sn, and the log-likelihood ℓ2(π; y, s) for the categorical data y1 j, . . . , yn j, j = 1, . . . , J, within each

subpopulation defined by the classes in s. In fact, ℓ(β, π; y, s, x) = ℓ1(β; s, x) + ℓ2(π; y, s), with

ℓ1(β; s, x) + ℓ2(π; y, s) =

n
∑

i=1

R
∑

r=1

1(si = r) log















exp(x
⊺

i
βr)

∑R
l=1 exp(x

⊺

i
βl)















+

n
∑

i=1

R
∑

r=1



















J
∑

j=1

K j
∑

y j=1

1(si = r)1(yi j = y j) log π jr(y j)



















. (4)

Maximizing ℓ1(β; s, x) with respect to β requires algorithms for multinomial logistic regression, within

a generalized linear models framework [e.g. 1, Chapter 7], whereas ℓ2(π; y, s) is analytically maximized at

π̂ jr(y j) =

∑n
i=1 1(si = r)1(yi j = y j)
∑n

i=11(si = r),
for each r = 1, . . . ,R, j = 1, . . . , J, y j = 1, . . . ,K j. (5)

Unfortunately, s is not observed. Therefore, estimation of β and π needs to rely only on the information

provided by the data (yi, xi), for i = 1, . . . , n.
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There are two main strategies in the literature to estimate β and π, generally referred to as one–step

[3, 12, 25] and three–step [6, 26] methods. The former attempt simultaneous estimation of β and π in (2),

leveraging the augmented log-likelihood (4). The latter consider, instead, a multi–step routine which first

estimates s1, . . . , sn, along with π, from a latent class model without covariates, and then uses the predicted

classes as responses in ℓ1(β; ŝ, x)—or a modification of it—to estimate β.

Although the above methods are considered in routine implementations—including the R library poLCA

[19] and the software Latent GOLD [27]—as discussed in Sect. 1.1–1.2, both strategies still raise concerns

on the quality of the estimates and on the efficiency of the algorithms. Motivated by these issues, Sect. 2

describes a nested em which provides more reliable estimation routines for this class of models within the

maximum likelihood framework. As outlined on a real dataset in Sect. 3, the proposed methods enjoy

improved theoretical properties and superior performance. Concluding remarks can be found in Sect. 4.

1.1. One–step estimation methods

Recalling Sect. 1, maximum likelihood estimation for the parameters in the full model (1)—characterizing

one–step methods [3, 12, 25]—proceeds via an em algorithm which leverages the complete log-likelihood

ℓ(β, π; y, s, x) = ℓ1(β; s, x) + ℓ2(π; y, s) (4) for the data (yi, xi) and the augmented latent class variable si,

i = 1, . . . , n. This additive structure of ℓ(β, π; y, s, x) allows separate estimation for the parameters β and

π. Moreover, ℓ1(β; s, x) and ℓ2(π; y, s) are linear in the augmented data 1(si = r). Letting θ = (β, π), this

facilitates a simple expectation step in which, at the general iteration t, each 1(si = r) is replaced with

s̄
(t)

ir
= E{1(si = r) | θ(t), yi, xi} =

exp{x
⊺

i
β(t)

r }
∏J

j=1

∏K j

y j=1
π

(t)

jr
(y j)

1(yi j=y j)

∑R
l=1 exp{x

⊺

i
β

(t)

l
}
∏J

j=1

∏K j

y j=1
π

(t)

jl
(y j)

1(yi j=y j)
, for each r = 1, . . . ,R, i = 1, . . . , n, (6)

to obtain the expected values Q1(β | θ(t)) and Q2(π | θ(t)) of the log-likelihoods ℓ1(β; s, x) and ℓ2(π; y, s),

respectively, whose summation defines the expectation Q(β, π | θ(t)) of the complete log-likelihood (4) with

respect to the distribution of s, given the current estimates θ(t). Hence, θ(t+1)
= argmaxβ,π{Q(β, π | θ(t))} in

the m–step can be obtained by maximizing Q1(β | θ(t)) and Q2(π | θ(t)) separately.

Consistent with (5), the expected log-likelihood Q2(π | θ(t)) is easily maximized at

π
(t+1)
jr

(y j) =

∑n
i=1 s̄

(t)

ir
1(yi j = y j)

∑n
i=1 s̄

(t)

ir

, for each r = 1, . . . ,R, j = 1, . . . , J, y j = 1, . . . ,K j. (7)

It is instead not possibile to maximize analytically Q1(β | θ(t)) with respect to β, due to the logistic link.

To address this issue [12] and [25] consider one Newton–Raphson step relying on a quadratic approximation

3
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of Q1(β | θ(t)). The routine proposed by [3] leverages instead a slightly different update relying on the

Hessian and the gradient computed from full–model log-likelihood in (2), and evaluated at (β(t), π(t)) and

s̄
(t)
ir

, r = 1, . . . ,R, i = 1, . . . , n. This procedure—implemented in R library poLCA [19]—breaks the em

rationale, since the m–step for β maximizes a plug–in estimate of a quadratic approximation for ℓ(β; y, x),

instead of Q1(β | θ(t)). This may lead to less stable behaviors.

Although the above solutions provide standard approaches to obtain β(t+1), the resulting computational

routines guarantee neither Q1(β(t+1) | θ(t)) ≥ Q1(β | θ(t)), nor Q1(β(t+1) | θ(t)) ≥ Q1(β(t) | θ(t)) [4, 5], and

therefore the proposed methods are neither an em, nor a generalized em algorithm, respectively [10]. Failure

to improve the expected log-likelihood may also affect the monotonicity of the sequence ℓ(β(t), π(t); y, x),

thereby providing routines which do not meet the basic properties of em, and may not guarantee reliable

convergence [e.g. 22, Chapter 1.5.5]. As we will outline in Sect. 3, this issue is not just found in pathological

scenarios, but arises also in routine applications, and may substantially affect convergence to the maximum

log-likelihood. Although careful routines can be designed to overcome this issue, we shall emphasize that

Q1(β | θ(t)) is defined on a set of latent responses whose expectation (6) changes at every iteration of the

algorithm. This setting is more problematic than classical multinomial logit with observed response data,

and is further complicated by the need to estimate π along with β in (1). Hence, unstable updating steps

may have major effects on estimation. Even Monte Carlo em routines [28] do not address the problem, since

such methods are devised for intractable e–steps and not for m–steps having no analytical solutions.

To mitigate the above issues, standard implementations consider multiple runs based on different initial-

izations of the em, and rely on the routine converging to the highest log-likelihood. Alternatively, internal

checks can be included to control for decays. These strategies provide more reliable routines, but require

multiple runs which increase computational costs. A possibility to reduce decays in ℓ(β(t), π(t); y, x), without

relying on multiple runs, is to rescale the inverse of the Hessian by a step–size 0 < α ≤ 1 [e.g. 22, Chapter

1.5.6]. However, the implementation requires the choice of α, without theory on optimal settings.

Motivated by the above issues, [4, 5] proposed a Minorize–Majorize (mm) algorithm [e.g. 16] for logistic

and multinomial logit regression, which replaces the Hessian with a matrix B to obtain a quadratic function

minorizing the log-likelihood at every β and tangent to it in β(t). This provides a simple updating scheme

similar to the Newton–Raphson which guarantees monotone log-likelihood sequences. Although not cur-

rently implemented in latent class models, these strategies can be easily incorporated in the m–step for β by

replacing the observed responses with the expectation (6) of the latent classes. As outlined in Sect.3, this

procedure provides monotone log-likelihood sequences, but requires more iterations than nested em.

4
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1.2. Three–step estimation methods

Differently from one–step methods, the three–step procedures [e.g. 8] do not attempt direct maximiza-

tion of (2), but instead rely on a multi–step strategy which first estimates π and the class probabilities via

closed–form em for latent class models without covariates, and then obtain β̂ from a multinomial logit with

the predicted classes ŝ1, . . . , ŝn from the previous model acting as observed responses.

The above procedure provides a simple estimation strategy, which is motivated by its interpretability.

However, as discussed in [6] and [26], the resulting estimators for the coefficients in β are subject to system-

atic bias. Motivated by these issues, [6] and [26], recently developed two bias–correction methods relying

on a modification of the multinomial log-likelihood for ŝ1, . . . , ŝn, which incorporates the classification er-

ror. The bias–corrected log-likelihood proposed in [6] allows simple estimation via standard algorithms for

multinomial logistic regression, but this method can be applied only when the covariates are categorical. A

more general correction procedure is considered by [26] to include continuous covariates. This approach

further improves efficiency and facilitates wider applicability. There is also a focus on other mechanisms to

predict the classes, but the final results are not substantially different [26, 2].

Although the bias adjustment in [26] is widely considered in several implementations, the estimates

remain still sub-optimal compared to one–step methods, since they do not directly maximize the full–model

log-likelihood (2), and hence cannot be considered as the maximum likelihood estimates. Indeed, when

the focus is on providing reliable inference for the parameters β and π in (1), it is arguably more coherent

to attempt a direct maximization of the log-likelihood in (2), since it guarantees unbiased, efficient and

consistent estimators, under the classical likelihood inference theory, if the model is correctly specified [6].

2. Nested em for one–step estimation

To address the aforementioned issues, we propose a nested em algorithm for one–step estimation which

avoids approximations of the expected log-likelihood Q1(β | θ(t)), but improves this function sequentially

via a set of conditional expectation–maximizations for every vector of coefficients βr, given the others.

Working with conditional expected log-likelihoods is appealing in providing a set of different logistic

regressions for which the recent Pólya-gamma data augmentation scheme [24, 7] guarantees closed–form

maximization via generalized least squares. Indeed, following Theorem 1 in [24], the generic logistic likeli-

hood exp(x⊺β)a{1+ exp(x⊺β)}−b, can be rewritten as 2−b exp{(a− 0.5b)x⊺β}cosh(0.5x⊺β)−b, b ≥ 0, whereas

the likelihood of a Pólya-gamma variable ω ∼ pg(b, x⊺β) is proportional to exp{−0.5ω(x⊺β)2}cosh(0.5x⊺β)b.

Hence, combining these two quantities provides an augmented likelihood exp{−0.5ω(x⊺β)2
+ (a−0.5b)x⊺β}

5
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for data (a, ω) which is proportional to the one induced by a Gaussian regression for the transformed re-

sponse ω−1(a− 0.5b) ∼ N(x⊺β, ω−1). This allows simple maximization for β within a Gaussian framework.

Note that, as discussed in [24], other Gaussian–related data augmentations for logistic regression have been

developed. However, these strategies require more complex representations [24], thus leading to intractable

computations. Instead, the Pólya-gamma data augmentation leads directly to a Gaussian likelihood with a

single latent variable ω, whose expectation is analytically available via E(ω) = 0.5b(x⊺β)−1tanh(0.5x⊺β).

Besides providing tractable computations, the proposed procedure guarantees monotone log-likelihood se-

quences and is directly motivated by an exact em for the special case of R = 2 classes, described below.

2.1. Exact em algorithm for R = 2

Let us first focus on deriving an em for R = 2 latent classes, which provides analytical maximization

also for β1. In fact, when R = 2 the expected value of ℓ1(β; s, x) = ℓ1(β1; s, x) is

Q1(β | θ(t)) = Q1(β1 | θ
(t)) =

n
∑

i=1

log

















exp(x
⊺

i
β1)s̄

(t)

i1

{1+ exp(xT

i
β1)}s̄

(t)

i1

·
{1+ exp(x

⊺

i
β1)}s̄

(t)

i1

1+ exp(x
⊺

i
β1)

















=

n
∑

i=1

log

















exp(x
⊺

i
β1)s̄

(t)

i1

1+ exp(x
⊺

i
β1)

















,

thus providing the log-likelihood ℓ∗
1
(β1; s̄(t), x) of a logistic regression in which the entries in s̄(t) act as

responses. This allows the implementation of the Pólya-gamma data augmentation. In particular, defining

b := 1, a := s̄
(t)

i1
, x⊺β := x

⊺

i
β1 and ω := ωi1, leads to the complete log-likelihood

ℓ∗1(β1; s̄(t), x,ω) =

n
∑

i=1

log















cosh{0.5(x
⊺

i
β1)}

exp{0.5ωi1(xT

i
β1)2}

·
exp{(s̄

(t)

i1
− 0.5)xT

i
β1}

cosh{0.5(x
⊺

i
β1)}















+ const,

=

n
∑

i=1

[−0.5ωi1(x
⊺

i
β1)2
+ (s̄

(t)

i1
− 0.5)x

⊺

i
β1] + const, (8)

for s̄(t), x, and the Pólya-gamma augmented data ω = (ω11, . . . , ωn1). Equation (8) is a quadratic function

of x
⊺

i
β1, and is linear in ω. This allows the implementation of a simple nested expectation step in which

every ωi1 is replaced with the expectation E(ωi1 | π
(t),β

(t)

1
, yi, xi) := ω̄

(t)

i1
= 0.5(x

⊺

i
β

(t)

1
)−1tanh(0.5x

⊺

i
β

(t)

1
)

to obtain Q∗
1
(β1 | θ

(t)) =
∑n

i=1 −0.5ω̄
(t)

i1
(η̄

(t)

i1
− x

⊺

i
β1)2

+ const, with η̄
(t)

i1
= (s̄

(t)

i1
− 0.5)/ω̄

(t)

i1
. The appealing

property associated with this nested expected log-likelihood, compared to Q1(β1 | θ
(t)), is that it allows

direct maximization for β1. Indeed, exploiting the generalized least squares, Q∗
1
(β1 | θ

(t)) is maximized at

β
(t+1)

1
= (X⊺

Ω̄
(t)

X)−1X⊺
Ω̄

(t)
η̄

(t), (9)

where X is the n × P matrix having rows x
⊺

i
, whereas Ω̄

(t)
= diag(ω̄

(t)

11
, . . . , ω̄

(t)

n1
) and η̄(t)

= (η̄
(t)

11
, . . . , η̄

(t)

n1
)⊺.

Refer to [11] for recent results proving that solution (9) guarantees monotone convergence at optimal rate in

6
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logistic regression. This provides additional support for (9), compared to Newton–Raphson and mm updates.

We shall stress that, although we obtain Q∗
1
(β1 | θ

(t)) sequentially, this quantity coincides with the expec-

tation of the complete log-likelihood ℓ1(β1; s, x,ω). Hence, since Q2(π | θ(t)) is analytically maximized in

(7), the resulting routine is an exact em algorithm based on the complete log-likelihood ℓ(β1, π; y, s, x,ω) =

ℓ1(β1; s, x,ω) + ℓ2(π; y, s). Finally, note that since π(t+1) can be easily obtained before updating β, a more

efficient strategy, inspired by the multi-cycle expectation conditional maximization algorithm [23], is to up-

date also the expectation of s based on π(t+1) instead of π(t), before applying (9). As discussed in Sect. 2.2,

this solution will be adopted in the general case with R > 2.

2.2. Nested em algorithm for R > 2

When more than two classes are considered, Q1(β | θ(t)) has a multinomial logit form, and not a logistic

one. Thus, a direct application of the Pólya-gamma data augmentation is not possible. However, as we will

outline, the conditional expected log-likelihood for every vector of coefficients βr, given the others, can be

rewritten as a proper logistic log-likelihood [e.g. 15], thus motivating a Pólya-gamma data augmentation.

Based on this result, we propose a nested em which improves the expected log-likelihood for β via a set of

conditional expectation–maximizations. In particular, for each iteration t, we consider R∗ = R − 1 nested

cycles which sequentially improve the conditional expected log-likelihood of one vector of coefficients βr,

fixing the other βl, l , r at their most recent value. Hence, let β(t+r/R∗)
= {β

(t+1)

1
, . . . ,β

(t+1)
r ,β

(t)

r+1
, . . . ,β

(t)

R∗
},

denote the estimates for the class-specific vectors of coefficients at cycle r = 1, . . . ,R∗ in iteration t, we seek

a sequential updating procedure providing the chain inequalities

Q1(β(t+r/R∗) | π(t+1), β{t+(r−1)/R∗}) ≥ Q1(β{t+(r−1)/R∗} | π(t+1), β{t+(r−1)/R∗}), for each r = 1, . . . ,R∗. (10)

The key difference between β(t+r/R∗) and β{t+(r−1)/R∗} in (10), is that only the coefficients in βr are updated,

whereas all the others are kept fixed. Hence, at every cycle r we seek to improve the expected log-likelihood

produced in r − 1, by modifying only βr from its previous estimate at t to a new one at t + 1. In this respect,

such strategy partially recalls the univariate version of Newton–Raphson in [27], and adapts it to blocks of

parameters to obtain more efficient updates relying on the most recent estimates. Moreover, as outlined in

Proposition 2.1, the sequential improvements underlying the nested em, along with the direct maximization

of Q2(π | θ(t)), guarantee the monotonicity of the sequence ℓ(β(t), π(t); y, x). This is fundamental to ensure

reliable convergence [4]. Note that in (10), also the expectation of the conditional log-likelihood with re-

spect to the augmented data is sequentially updated using the estimates of the coefficients from the previous

cycle, in the same spirit of the multi-cycle expectation conditional maximization [23].

7
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In deriving an updating procedure for βwith property (10), we adapt results in Sect. 2.1, which provides

simple and explicit maximization for each βr. Focusing on cycle r within iteration t, let Q1(βr | θ
{t+(r−1)/R∗}),

with θ{t+(r−1)/R∗}
= (π(t+1),β{t+(r−1)/R∗}), denote the conditional expected log-likelihood, written as a function

of only βr, with all the other class-specific coefficients fixed at their corresponding estimates at cycle r − 1.

According to equations (4) and (6), the function Q1(βr | θ
{t+(r−1)/R∗}) can be expressed as

n
∑

i=1















s̄
{t+(r−1)/R∗}

ir
log















exp(x
⊺

i
βr)

exp(x
⊺

i
βr) + c

{t+(r−1)/R∗}

i















+

∑

l,r

s̄
{t+(r−1)/R∗}

il
log















exp(x
⊺

i
β
{t+(r−1)/R∗}

l
)

exp(x
⊺

i
βr) + c

{t+(r−1)/R∗}

i





























, (11)

where the constants c
{t+(r−1)/R∗}

i
denote the sum of all the exponential quantities exp(x

⊺

i
βl), l , r, written as

a function of the current estimates for the class-specific coefficients at cycle r − 1, whereas the expectation

of the augmented latent class indicators are calculated in (6) as a function of π(t+1) and β{t+(r−1)/R∗}.

Since we aim to improve Q1(β
(t)
r | θ

{t+(r−1)/R∗}) = Q1(β{t+(r−1)/R∗} | θ{t+(r−1)/R∗}) by updating the current

estimate of βr under the Pólya-gamma data augmentation outlined in the previous section, let us highlight

a logistic log-likelihood in (11). Indeed, holding out additive constants not depending on βr, and dividing

both the numerator and the denominator of the arguments in the logarithmic functions by the quantities in

the vector c{t+(r−1)/R∗}, we easily obtain

Q1(βr | θ
{t+(r−1)/R∗}) =

n
∑

i=1

log



















{exp(x
⊺

i
βr − a

{t+(r−1)/R∗}
i

)}s̄
{t+(r−1)/R∗}
ir

1 + exp(x
⊺

i
βr − a

{t+(r−1)/R∗}

i
)



















+ const, (12)

where a
{t+(r−1)/R∗}

i
= log c

{t+(r−1)/R∗}

i
, and provided that s̄

{t+(r−1)/R̄}

ir
+
∑

l,r s̄
{t+(r−1)/R̄}

il
= 1. Hence, up to the

constants a
{t+(r−1)/R̄}
i

in the linear predictor, equation (12) for βr has the same form of the expected log-

likelihood for β1 in Sect. 2.1, thereby motivating the Pólya-gamma data augmentation at each cycle r of the

nested em. In particular, introducing ωir ∼ pg(1, x
⊺

i
βr − a

{t+(r−1)/R∗}

i
), for every i = 1, . . . , n, we can exploit

the analytical results in Sect. 2.1, to show that the conditional expectation of each ωir is

ω̄
{t+(r−1)/R∗}

ir
= 0.5(x

⊺

i
β

(t)
r − a

{t+(r−1)/R∗}

i
)−1tanh[0.5(x

⊺

i
β

(t)
r − a

{t+(r−1)/R∗}

i
)], (13)

and that the desired increment (10) at cycle r, can be simply obtained—similarly to (9)—by setting

β(t+1)
r = (X⊺

Ω̄
{t+(r−1)/R∗}

X)−1X⊺
Ω̄
{t+(r−1)/R∗}

η̄{t+(r−1)/R∗}, (14)

where Ω̄
{t+(r−1)/R∗}

is an n× n diagonal matrix with elements ω̄
{t+(r−1)/R∗}
ir

, whereas η̄{t+(r−1)/R∗} is a vector of

length n with entries η̄
{t+(r−1)/R∗}

ir
= (s̄

{t+(r−1)/R∗}

ir
−0.5+ ω̄

{t+(r−1)/R∗}

ir
a
{t+(r−1)/R∗}

i
)/ω̄

{t+(r−1)/R∗}

ir
, for i = 1, . . . , n.

Algorithm 1 provides details for the implementation of nested em. Note that all the steps require sim-

8
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Algorithm 1: Nested em algorithm for latent class regression models.

Initialize the model parameters π(1) and β(1) at iteration t = 1. Then, for t = 1 until convergence of ℓ(β(t), π(t); y, x)

Expectation: compute s̄
(t)

ir
as in (6).

Maximization: update the current estimate π(t) to obtain π(t+1) as in (7).

For r = 1 to r = R∗

Nested Expectation: compute s̄
{t+(r−1)/R∗}

ir
and ω̄

{t+(r−1)/R∗}

ir
by applying (6) and (13) to π(t+1) and the

current estimates of β produced by cycle r − 1.

Nested Maximization: update the current estimate β(t)
r to obtain β(t+1)

r as in (14).

ple and exact expressions, in contrast with current routines. Moreover, as proved in Proposition 2.1, our

methods imply monotone convergence.

Proposition 2.1. The nested em in Sect. 2.2 implies ℓ(β(t+1), π(t+1); y, x) ≥ ℓ(β(t), π(t); y, x) at any t.

Proof. To prove Proposition 2.1, we start by showing that the nested conditional expectation–maximizations

for each βr, r = 1, . . . ,R∗, imply (10). Since each of these optimizations steps is a pure em based on the

Pólya-gamma data augmentation, following [10], we have ℓ∗
1
(β

(t+1)
r ; s̄

{t+(r−1)/R∗}
r , x) ≥ ℓ∗

1
(β

(t)
r ; s̄

{t+(r−1)/R∗}
r , x)

for each r = 1, . . . ,R∗. This implies Q1(β{t+r/R∗}|θ{t+(r−1)/R∗}) ≥ Q1(β{t+(r−1)/R∗} | θ{t+(r−1)/R∗}), provided that

in (12) these log-likelihoods differ by an additive constant which does not depend on βr. To conclude the

proof, we need to ensure that the inequalities in (10), along with the direct maximization of Q2(π | θ(t)),

guarantee ℓ(β(t+1), π(t+1); y, x) ≥ ℓ(β(t), π(t); y, x). Let Q(β, π | θ(t)) = Q1(β | θ(t)) + Q2(π | θ(t)) be the

expected log-likelihood, written as a function of all the parameters in our model. Direct maximization of

Q2(π | θ(t)) in the first step of our routine, guarantees Q(π(t),β(t) | π(t),β(t)) ≤ Q(π(t+1),β(t) | π(t),β(t)).

Therefore, as discussed in page 165 of [22], this first result guarantees ℓ(π(t+1),β(t); y, x) ≥ ℓ(π(t),β(t); y, x).

Similarly, the inequalities in (10), characterizing each nested cycle r, ensure ℓ(π(t+1),β(t+r/R∗); y, x) ≥

ℓ(π(t+1),β(t+(r−1)/R∗); y, x) for every r = 1, . . . ,R∗. Joining these results we can prove Proposition 2.1 via

ℓ(π(t), β
(t)

1
, . . . , β(t)

r , . . . , β
(t)

R∗
; y, x) ≤ ℓ(π(t+1), β

(t)

1
, . . . , β(t)

r , . . . , β
(t)

R∗
; y, x) ≤ ℓ(π(t+1), β

(t+1)

1
, . . . , β(t)

r , . . . , β
(t)

R∗
; y, x) ≤

. . . ≤ ℓ(π(t+1), β
(t+1)

1
, . . . , β(t+1)

r , . . . , β
(t)

R∗
; y, x) ≤ . . . ≤ ℓ(π(t+1), β

(t+1)

1
, . . . , β(t+1)

r , . . . , β
(t+1)

R∗
; y, x).

2.3. Hybrid nested em for one–step estimation

Before evaluating the empirical performance of nested em, we first propose a more practical and effi-

cient hybrid modification. Indeed, as discussed in [26], the em is characterized by stable maximization even

when the initialization is far from the optimal solution, whereas Newton–Raphson guarantees fast conver-

gence when the routine is close to the maximum. Motivated by this result, we propose an hybrid procedure

which starts with nested em and then switches to classical Newton–Raphson [12, 25] when the increment
9
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ℓ(β(t+1), π(t+1); y, x) − ℓ(β(t), π(t); y, x) is less than or equal to a pre–specified small ǫ ≥ 0. Although the in-

clusion of Newton–Raphson steps could still cause decays in the log-likelihood sequence, when the routine

is in a neighborhood of the global—or local—maximum, the parabolic approximation is more stable.

3. Empirical study

To study the benefits of nested em in a real–data application, we compare its computational performance

with those of the routines discussed in Sect. 1.1 and 1.2. In particular, one–step competitors comprise the em

with one Newton–Raphson step (nrEM) from [3], the more formal em (nrEMQ1) maximizing Q1(β | θ(t)) as

in [12, 25], and the conservative version of nrEMQ1 which relies on the rescaled updating of β, as outlined

in Sect. 1.1, with α = 0.5 (nrEMQ1, α = 0.5). Recalling Sect. 1.1, we additionally adapt the mm (mmEM)

proposed by [4, 5] to compare empirical performance with a routine guaranteeing monotone log-likelihood

sequences. The three–step methods considered are instead the classical strategy (3stepClassical) discussed

in Sect. 1.2 [e.g. 8], and the popular bias–corrected algorithm (3stepCorrection) from [26]. The hybridEM

is instead the modification of our nestedEM presented in Sect. 2.3. In performing maximization under this

modified version of the nested em we set ǫ = 0.01. Although we have found the results robust to moderate

changes in small values of ǫ, it is important to notice that high ǫ should be avoided since it allows the hybrid

routine to rely on Newton–Raphson steps even when ℓ(β(t), π(t); y, x) is far from the maximum.

To provide a detailed assessment, we perform estimation under the above algorithms for 100 runs, with

varying random initialization. The routines are all initialized at the same values—for each run—and stop

when the increment in the log-likelihood is lower than 10−11. For every run we study the maximization

performance and the computational efficiency of the different algorithms. Specifically, the maximization

performance is monitored by the number of runs with a decay in the log-likelihood sequence, and by the

frequency of runs converging to local modes. For the runs reaching local modes, we also compute the

median of the absolute difference between the log-likelihood in these local modes and the maximum one.

Computational efficiency is instead studied via the median number of iterations for convergence, computed

only for the runs reaching maxβ,π{ℓ(β, π; y, x)}, and the averaged computational time.1 Code to reproduce

the analyses and further results are available at https://github.com/danieledurante/nEM.

Table 1 summarizes the performance of the methods discussed in Sect. 1.1–2, for an application to the

election data available in the R library poLCA [19]. This dataset measures voters political affiliation, along

with their opinions on how well six different personality traits describe the candidates Al Gore and George

1Computations rely on R (version 3.3.2) implementations in a machine with 1 Intel Core i5 2.5 GHz processor and 4 GB ram.
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Table 1. Quantitative evaluation of the maximization quality and the computational efficiency of the routines discussed in Sect. 1.1–

2. The value maxθ{ℓ(θ; y, x)} coincides with the highest log-likelihood observed in the 100 runs of the different algorithms. Since

most of these routines are devised to maximize ℓ(θ; y, x), such choice can be safely regarded as the maximum log-likelihood.

ELECTION DATA R = 3 nrEM nrEMQ1 nrEMQ1 α = 0.5 mmEM

Number of runs with a decay in ℓ(θ(t); y, x) 78 37 12 0

Number of runs reaching a local mode 94 51 24 27

|ℓ(θ̂; y, x)−maxθ{ℓ(θ; y, x)}| local modes 830.046 1105.626 4.894 0.644

Iterations to reach maxθ{ℓ(θ; y, x)} 146 151 161 229

Averaged computational time for each run 0.073” 0.182” 0.230” 0.283”

ELECTION DATA R = 3 3stepClassical 3stepCorrection nestedEM hybridEM

Number of runs with a decay in ℓ(θ(t); y, x) na na 0 0

Number of runs reaching a local mode 100 100 24 25

|ℓ(θ̂; y, x)−maxθ{ℓ(θ; y, x)}| local modes 42.224 39.104 0.644 0.644

Iterations to reach maxθ{ℓ(θ; y, x)} na na 171 166

Averaged computational time for each run 0.229” 0.212” 0.359” 0.265”

Bush before the 2000 presidential elections. These J = 12 categorical opinions are collected on a four items

scale for n = 880 voters. Here, we assess performance of the maximization routines considering R = 3

classes, with the political affiliation entering as covariate in the multinomial logit for such latent classes.

Consistent with Sect. 1.1–2, nestedEM and mmEM always provide monotone sequences for (2), thereby

guaranteeing accurate maximization and reduced frequency of local modes. Including a Newton–Raphson

step as in [3, 12, 25], leads instead to decays in the log-likelihood sequences, which increase the chance of

local modes far from maxβ,π{ℓ(β, π; y, x)}. As discussed in Sect. 1.1, this issue is more severe for nrEM [3]

compared to the formal nrEMQ1 [12, 25]. This reduced maximization performance of the Newton–type

algorithms is mitigated by partial improvements in computational efficiency compared to nestedEM and

mmEM, which remain, however, on a similar scale both for the averaged computational time of each run,

and for the number of iterations to reach maxβ,π{ℓ(β, π; y, x)}. Since these algorithms perform estimation in

fractions of seconds, an improved maximization performance is arguably the most important property.

Combining nestedEM and nrEMQ1, provides an hybridEM which guarantees the accurate maximiza-

tion performance of monotone algorithms and a computational efficiency comparable to Newton–type meth-

ods. Also rescaling the Newton–Raphson updating of β by α = 0.5, allows improvements in maximization

performance, but these gains are associated with a reduced computational efficiency. To conclude the eval-

uation of the one–step algorithms, we shall notice that the correction proposed by [4, 5] guarantees reliable

maximization, but, as theoretically proved in [11], their global conservative bound requires more iterations

to reach convergence compared to nestedEM and hybridEM.

As discussed in Sect. 1.2, the three–step algorithms do not attempt direct maximization of (2). The

11
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consequences of this are evident in Table 1 with all the runs of the 3stepClassical and the 3stepCorrection

routines providing sub-optimal estimates which induce local modes in the full–model log-likelihood. Due

to this, it is not possible to study the number of iterations to reach maxβ,π{ℓ(β, π; y, x)}. Also the number

of decays in ℓ(β(t), π(t); y, x) is somewhat irrelevant to evaluate the three–step methods, since the estimation

routines are based on two separate maximizations not directly related to (2). It is also worth noticing

that, although our studies are based on the log-likelihood sequence instead of the parameters estimates,

within a maximum likelihood approach these two quantities are directly related. In fact, our goal is not on

providing a new class of models and estimators for the parameters in (1), but an improved maximization

routine for likelihood–based inference, with more reliable convergence to the optimal parameters estimates

maximizing (2). In this respect, we have also inspected the estimates associated with the local modes in

Table 1 observing evident deviations from the optimal ones, especially in local maxima with a log-likelihood

notably below maxβ,π{ℓ(β, π; y, x)}. This result provides further support to our nested em.

In performing the above studies we initialized β from independent Gaussians with mean 0 and small

variance 0.5. Reducing such variance—i.e. initializing β close to 0—yield to gains in all routines. Also in

these cases, however, the performance of nestedEM and hybridEM was not worse than the other algorithms,

while being less sensitive to initialization. Similar conclusions were obtained in other applications.

4. Discussion

Motivated by the recent Pólya-gamma data augmentation for logistic regression, and by the lack of fully

reliable estimation routines for latent class models with covariates, we developed a nested em for one–step

maximum likelihood estimation within this class of models. Differently from Newton–type methods, the

nested em has theoretical guarantee of monotone log-likelihood sequences, while ensuring convergence at a

faster rate than mm routines [11]. This provides improved estimation and computational efficiency.

Although our focus has been on latent class analysis with covariates, the nested em can be also adapted to

multinomial logit models with Gaussian random effects. In this setting, the calculation of the expected log-

likelihood for the fixed coefficients requires intractable marginalization over the Gaussian random effects,

thus requiring Monte Carlo em [28], h–likelihood [18] and other methods [e.g. 20]. Our nested em could

provide key benefits over these alternatives. In fact, conditioned on Pólya-gamma augmented data, it is

possible to perform closed–form marginalization and maximization as in Gaussian linear mixed models.
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