135 research outputs found

    Mouse Models of Follicular and Papillary Thyroid Cancer Progression

    Get PDF
    A significant number of well-differentiated thyroid cancers progress or recur, becoming resistant to current therapeutic options. Mouse models recapitulating the genetic and histological features of advanced thyroid cancer have been an invaluable tool to dissect the mechanisms involved in the progression from indolent, well differentiated tumors to aggressive, poorly differentiated carcinomas, and to identify novel therapeutic targets. In this review, we focus on the lessons learned from models of epithelial cell-derived thyroid cancer showing progression from hyperplastic lesions to locally invasive and metastatic carcinomas

    Thyrocyte-specific inactivation of p53 and Pten results in anaplastic thyroid carcinomas faithfully recapitulating human tumors

    Get PDF
    Anaplastic thyroid carcinoma (ATC) is the most aggressive form of thyroid cancer, and often derives from pre-existing well-differentiated tumors. Despite a relatively low prevalence, it accounts for a disproportionate number of thyroid cancer-related deaths, due to its resistance to any therapeutic approach. Here we describe the first mouse model of ATC, obtained by combining in the mouse thyroid follicular cells two molecular hallmarks of human ATC: activation of PI3K (via Pten deletion) and inactivation of p53. By 9 months of age, over 75% of the compound mutant mice develop aggressive, undifferentiated thyroid tumors that evolve from pre-existing follicular hyperplasia and carcinoma. These tumors display all the features of their human counterpart, including pleomorphism, epithelial-mesenchymal transition, aneuploidy, local invasion, and distant metastases. Expression profiling of the murine ATCs reveals a significant overlap with genes found deregulated in human ATC, including genes involved in mitosis control. Furthermore, similar to the human tumors, [Pten, p53]thyr−/− tumors and cells are highly glycolytic and remarkably sensitive to glycolysis inhibitors, which synergize with standard chemotherapy. Taken together, our results show that combined PI3K activation and p53 loss faithfully reproduce the development of thyroid anaplastic carcinomas, and provide a compelling rationale for targeting glycolysis to increase chemotherapy response in ATC patients

    Ho-1 modulates aerobic glycolysis through ldh in prostate cancer cells

    Get PDF
    Prostate cancer (PCa) is the second most diagnosed malignancy and the fifth leading cause of cancer associated death in men worldwide. Dysregulation of cellular energetics has become a hallmark of cancer, evidenced by numerous connections between signaling pathways that include oncoproteins and key metabolic enzymes. We previously showed that heme oxygenase 1 (HO-1), a cellular homeostatic regulator counteracting oxidative and inflammatory damage, exhibits anti-tumoral activity in PCa cells, inhibiting cell proliferation, migration, tumor growth and angiogenesis. The aim of this study was to assess the role of HO-1 on the metabolic signature of PCa. After HO-1 pharmacological induction with hemin, PC3 and C4-2B cells exhibited a significantly impaired cellular metabolic rate, reflected by glucose uptake, ATP production, lactate dehydrogenase (LDH) activity and extracellular lactate levels. Further, we undertook a bioinformatics approach to assess the clinical significance of LDHA, LDHB and HMOX1 in PCa, identifying that high LDHA or low LDHB expression was associated with reduced relapse free survival (RFS). Interestingly, the shortest RFS was observed for PCa patients with low HMOX1 and high LDHA, while an improved prognosis was observed for those with high HMOX1 and LDHB. Thus, HO-1 induction causes a shift in the cellular metabolic profile of PCa, leading to a less aggressive phenotype of the disease.Fil: Cascardo, Florencia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Anselmino, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Paez, Alejandra. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Oncología "Ángel H. Roffo"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Labanca, Estefania. Md Anderson Cancer Center; Estados UnidosFil: Sanchis, Pablo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Antico Arciuch, Valeria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Navone, Nora. Md Anderson Cancer Center; Estados UnidosFil: Gueron, Geraldine. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Vazquez, Elba Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Cotignola, Javier Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    New Algorithm to Determine True Colocalization in Combination with Image Restoration and Time-Lapse Confocal Microscopy to Map Kinases in Mitochondria

    Get PDF
    The subcellular localization and physiological functions of biomolecules are closely related and thus it is crucial to precisely determine the distribution of different molecules inside the intracellular structures. This is frequently accomplished by fluorescence microscopy with well-characterized markers and posterior evaluation of the signal colocalization. Rigorous study of colocalization requires statistical analysis of the data, albeit yet no single technique has been established as a standard method. Indeed, the few methods currently available are only accurate in images with particular characteristics. Here, we introduce a new algorithm to automatically obtain the true colocalization between images that is suitable for a wide variety of biological situations. To proceed, the algorithm contemplates the individual contribution of each pixel's fluorescence intensity in a pair of images to the overall Pearsońs correlation and Manders' overlap coefficients. The accuracy and reliability of the algorithm was validated on both simulated and real images that reflected the characteristics of a range of biological samples. We used this algorithm in combination with image restoration by deconvolution and time-lapse confocal microscopy to address the localization of MEK1 in the mitochondria of different cell lines. Appraising the previously described behavior of Akt1 corroborated the reliability of the combined use of these techniques. Together, the present work provides a novel statistical approach to accurately and reliably determine the colocalization in a variety of biological images

    Prostate cancer castrate resistant progression usage of non-canonical androgen receptor signaling and ketone body fuel

    Get PDF
    Prostate cancer (PCa) that progresses after androgen deprivation therapy (ADT) remains incurable. The underlying mechanisms that account for the ultimate emergence of resistance to ADT, progressing to castrate-resistant prostate cancer (CRPC), include those that reactivate androgen receptor (AR), or those that are entirely independent or cooperate with androgen signaling to underlie PCa progression. The intricacy of metabolic pathways associated with PCa progression spurred us to develop a metabolism-centric analysis to assess the metabolic shift occurring in PCa that progresses with low AR expression. We used PCa patient-derived xenografts (PDXs) to assess the metabolic changes after castration of tumor-bearing mice and subsequently confirmed main findings in human donor tumor that progressed after ADT. We found that relapsed tumors had a significant increase in fatty acids and ketone body (KB) content compared with baseline. We confirmed that critical ketolytic enzymes (ACAT1, OXCT1, BDH1) were dysregulated after castrate-resistant progression. Further, these enzymes are increased in the human donor tissue after progressing to ADT. In an in silico approach, increased ACAT1, OXCT1, BDH1 expression was also observed for a subset of PCa patients that relapsed with low AR and ERG (ETS-related gene) expression. Further, expression of these factors was also associated with decreased time to biochemical relapse and decreased progression-free survival. Our studies reveal the key metabolites fueling castration resistant progression in the context of a partial or complete loss of AR dependence.Fil: Labanca, Estefania. University of Texas; Estados UnidosFil: Bizzotto, Juan Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Sanchis, Pablo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Anselmino, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yang, Jun. University of Texas; Estados UnidosFil: Shepherd, Peter D. A.. University of Texas; Estados UnidosFil: Paez, Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Antico Arciuch, Valeria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Lage Vickers, Sofia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Hoang, Anh G.. University of Texas; Estados UnidosFil: Tang, Ximing. University of Texas; Estados UnidosFil: Raso, Maria Gabriela. University of Texas; Estados UnidosFil: Titus, Mark. University of Texas; Estados UnidosFil: Efstathiou, Eleni. University of Texas; Estados UnidosFil: Cotignola, Javier Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Araujo, John. University of Texas; Estados UnidosFil: Logothetis, Christopher. University of Texas; Estados UnidosFil: Vazquez, Elba Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Navone, Nora. University of Texas; Estados UnidosFil: Gueron, Geraldine. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    Modulation of Astrocytic Mitochondrial Function by Dichloroacetate Improves Survival and Motor Performance in Inherited Amyotrophic Lateral Sclerosis

    Get PDF
    Mitochondrial dysfunction is one of the pathogenic mechanisms that lead to neurodegeneration in Amyotrophic Lateral Sclerosis (ALS). Astrocytes expressing the ALS-linked SOD1G93A mutation display a decreased mitochondrial respiratory capacity associated to phenotypic changes that cause them to induce motor neuron death. Astrocyte-mediated toxicity can be prevented by mitochondria-targeted antioxidants, indicating a critical role of mitochondria in the neurotoxic phenotype. However, it is presently unknown whether drugs currently used to stimulate mitochondrial metabolism can also modulate ALS progression. Here, we tested the disease-modifying effect of dichloroacetate (DCA), an orphan drug that improves the functional status of mitochondria through the stimulation of the pyruvate dehydrogenase complex activity (PDH). Applied to astrocyte cultures isolated from rats expressing the SOD1G93A mutation, DCA reduced phosphorylation of PDH and improved mitochondrial coupling as expressed by the respiratory control ratio (RCR). Notably, DCA completely prevented the toxicity of SOD1G93A astrocytes to motor neurons in coculture conditions. Chronic administration of DCA (500 mg/L) in the drinking water of mice expressing the SOD1G93A mutation increased survival by 2 weeks compared to untreated mice. Systemic DCA also normalized the reduced RCR value measured in lumbar spinal cord tissue of diseased SOD1G93A mice. A remarkable effect of DCA was the improvement of grip strength performance at the end stage of the disease, which correlated with a recovery of the neuromuscular junction area in extensor digitorum longus muscles. Systemic DCA also decreased astrocyte reactivity and prevented motor neuron loss in SOD1G93A mice. Taken together, our results indicate that improvement of the mitochondrial redox status by DCA leads to a disease-modifying effect, further supporting the therapeutic potential of mitochondria-targeted drugs in ALS

    Tumor Cell Phenotype Is Sustained by Selective MAPK Oxidation in Mitochondria

    Get PDF
    Mitochondria are major cellular sources of hydrogen peroxide (H2O2), the production of which is modulated by oxygen availability and the mitochondrial energy state. An increase of steady-state cell H2O2 concentration is able to control the transition from proliferating to quiescent phenotypes and to signal the end of proliferation; in tumor cells thereby, low H2O2 due to defective mitochondrial metabolism can contribute to sustain proliferation. Mitogen-activated protein kinases (MAPKs) orchestrate signal transduction and recent data indicate that are present in mitochondria and regulated by the redox state. On these bases, we investigated the mechanistic connection of tumor mitochondrial dysfunction, H2O2 yield, and activation of MAPKs in LP07 murine tumor cells with confocal microscopy, in vivo imaging and directed mutagenesis. Two redox conditions were examined: low 1 µM H2O2 increased cell proliferation in ERK1/2-dependent manner whereas high 50 µM H2O2 arrested cell cycle by p38 and JNK1/2 activation. Regarding the experimental conditions as a three-compartment model (mitochondria, cytosol, and nuclei), the different responses depended on MAPKs preferential traffic to mitochondria, where a selective activation of either ERK1/2 or p38-JNK1/2 by co-localized upstream kinases (MAPKKs) facilitated their further passage to nuclei. As assessed by mass spectra, MAPKs activation and efficient binding to cognate MAPKKs resulted from oxidation of conserved ERK1/2 or p38-JNK1/2 cysteine domains to sulfinic and sulfonic acids at a definite H2O2 level. Like this, high H2O2 or directed mutation of redox-sensitive ERK2 Cys214 impeded binding to MEK1/2, caused ERK2 retention in mitochondria and restricted shuttle to nuclei. It is surmised that selective cysteine oxidations adjust the electrostatic forces that participate in a particular MAPK-MAPKK interaction. Considering that tumor mitochondria are dysfunctional, their inability to increase H2O2 yield should disrupt synchronized MAPK oxidations and the regulation of cell cycle leading cells to remain in a proliferating phenotype

    Proliferation mechanisms dependent on cellular redox state: role of Akt and other kinases involved in cell cycle progression

    No full text
    En las últimas décadas se demostró que la producción transitoria de peróxido de hidrógeno (H2O2) constituye un evento muy importante de señalización disparado a través de la activación de receptores de superficie o determinado por el estado metabólico mitocondrial, y que modula el grado de fosforilación de determinadas proteínas. En este contexto, estudios recientes han confirmado la presencia de kinasas en la mitocondria que hemos interpretado como un mecanismo modulatorio en la disponibilidad celular de las kinasas. Las mitocondrias normales poseen la mayor concentración celular de ATP y H2O2 en el estado estacionario y contribuyen naturalmente al grado de fosforilación y oxidación de proteínas, dos modificaciones post-traduccionales centrales en la activación de las kinasas. Sobre estas bases, formulamos la hipótesis que el estado redox produce efectos celulares diferenciales en consonancia con la activación de Akt1 y ERK1/2 en la mitocondria, y que en este compartimiento, el H2O2 determina cambios conformacionales que favorecen la fosforilación y posterior translocación nuclear de las mismas. Los estudios realizados en esta Tesis confirmaron que: 1) en la línea celular NIH/3T3, el H2O2 efectivamente modula la progresión del ciclo celular a través de la oxidación y fosforilación selectiva de Akt1 en mitocondrias; 2) en la línea tumoral LP07, el H2O2 asimismo promueve la oxidación selectiva de ERK1/2 o p38-JNK1/2 y posterior translocación al núcleo con efectos ulteriores en la proliferación celular; y 3) el sistema de tiorredoxinas (Trx) modula el destino celular regulando el nivel de oxidantes en las líneas celulares y provocando una activación selectiva en el eje central de Akt1 en el modelo tumoral analizado in vivo. En la línea NIH/3T3, la modulación por H2O2 involucró la entrada de P-Akt1 Ser473 a las mitocondrias, donde fue fosforilada en Thr308 por PDK1. A concentración celular limitada de H2O2, la fosforilación de Akt1 en Thr308 en mitocondrias fue significativa, determinó su pasaje al núcleo y disparó mecanismos genómicos que favorecieron la proliferación celular. En cambio, a elevadas concentraciones de H2O2, la asociación Akt1-PDK1 fue interrumpida y P-Akt1 Ser473 fue retenida en la mitocondria en detrimento de su translocación nuclear. La actividad disminuida de Akt1 favoreció la liberación de citocromo c al citosol conduciendo a la apoptosis. Los efectos diferenciales en la interacción Akt1-PDK1 dependieron de la oxidación selectiva de la Cys310 de Akt1 a ácido sulfénico y sulfónico. Las respuestas celulares observadas en la línea tumoral LP07 involucraron la activación selectiva de ERK1/2 y la interacción eficiente con MEK1/2 determinada por la oxidación de cisteínas conservadas pertenecientes a dominios redox sensibles. Estas modificaciones post-traduccionales que tuvieron lugar en la mitocondria determinaron el pasaje de la kinasa al núcleo. Considerando que las mitocondrias tumorales son disfuncionales, su incapacidad para incrementar la producción de H2O2 podría interrumpir la oxidación sincronizada de ERK1/2 y la regulación del ciclo celular causando la persistencia del fenotipo proliferante. En el mismo modelo tumoral analizado in vivo, el silenciamiento de Trx1 y 2 fue capaz de revertir el efecto de las condiciones redox proliferativas por una activación diferencial de Akt1. Los resultados obtenidos indicaron que al revertir la baja condición redox proliferante, P-Akt1 Ser473 aumentó en la mitocondria en detrimento de la translocación al núcleo, mientras que en los tumores que exhibieron bajo H2O2, P-Akt1 Ser473 se encontró predominantemente en el núcleo, sugiriendo una marcada modulación en la activación de la kinasa y su posterior translocación al núcleo. En esta Tesis, se demuestra el rol central del H2O2 en la activación y tráfico mitocondrial de Akt1 y ERK1/2 en la progresión del ciclo celular. Se concluye que la localización subcelular de estas kinasas en mitocondrias aporta un nuevo modelo para explicar la regulación de la activación por la oxidación de cisteínas específicas y la fosforilación en los residuos correspondientes. De esta forma, el ciclo intramitocondrial de Akt1 y ERK1/2 constituye un eje central para la modulación redox del destino celular en células normales o tumorales.Over the last decades, it has been demonstrated that the transitory production of hydrogen peroxide (H2O2) constitutes a very important event in signaling that can be triggered by activation of surface receptors or determined by mitochondrial metabolic state, and that modulates the phosphorylation level of certain proteins. In this context, recent studies have confirmed the presence of kinases in the mitochondria that we interpreted as a modulatory mechanism in the cellular availability of the kinases. Normal mitochondria have the major cellular ATP and H2O2 steady state concentrations and naturally contribute to the phosphorylation level and protein oxidation, two main postranslational modifications in the activation of kinases. On these bases, we postulated the hypothesis that redox state produces differential cellular effects in accord to Akt1 and ERK1/2 activation in mitochondria, and that in this compartment, H2O2 determines conformational changes that favor their phosphorylation and subsequent nuclear translocation. The studies performed in this Thesis confirmed that: 1) in NIH/3T3 cell line, H2O2 effectively modulates cell cycle progression through the oxidation and selective phosphorylation of Akt1 in mitochondria; 2) in the tumoral cell line LP07, H2O2 promotes as well the selective oxidation of ERK1/2 or p38-JNK1/2 and further translocation to nucleus with later effects in cell proliferation; and 3) the thiorredoxin system (Trx) modulates cell fate regulating the oxidant level and inducing a selective activation in the central axis of Akt1 in the tumoral model analyzed in vivo. In NIH/3T3 cell line, the modulation by H2O2 involved the entrance of P-Akt1 Ser473 to mitochondria, where it was phosphorylated in Thr308 by PDK1. At H2O2 cellular limiting concentrations, the phosphorylation of Akt1 in Thr308 in mitochondria was pronounced, determined its passage to nucleus and triggered genomic mechanisms that favoured cell proliferation. Oppositely, at higher H2O2 concentrations, Akt1-PDK1 association was disrupted and P-Akt1 Ser473 was retained in mitochondria in detriment of its nuclear translocation. Akt1 low activity favoured the release of cytochrome c to cytosol triggering apoptosis. The differential effects in Akt1-PDK1 interaction depended on the selective oxidation of Cys310 in Akt1 to sulfenic and sulfonic acid. The cellular responses observed in LP07 cell line engaged the selective activation of ERK1/2 and the efficient interaction with MEK1/2 determined by the oxidation of conserved cysteines belonging to redox sensitive domains. These postranslational modifications that took place in mitochondria determined the passage to nucleus. Considering that tumoral mitochondria are dysfunctional, the incapacity to increase H2O2 concentration could disrupt the synchronized oxidation of ERK1/2 and the regulation of cell cycle causing the persistence of the proliferative phenotype. In the same tumoral model analyzed in vivo, Trx1 and 2 silencing was able to revert the effect of redox proliferative conditions by a differential activation of Akt1. The obtained results indicated that in these conditions P-Akt1 Ser473 increased in mitochondria instead of translocating to nucleus, while in tumors with low H2O2 condition, P-Akt1 Ser473 was found predominantly in nucleus, suggesting a pronounced modulation in the activation and translocation of the kinase. In this Thesis, we demonstrated the key role of H2O2 in the activation and mitochondrial traffic of Akt1 and ERK1/2 in cell cycle progression. We conclude that the subcelullar localization of these kinases in mitochondria provides a new model to explain the regulation of the activation by oxidation of specific cysteines and the phosphorylation in the corresponding residues. In this sense, the intramitochondrial cycle of Akt1 and ERK1/2 constitutes a central axis for the redox modulation of cell fate in normal and tumoral cells.Fil:Antico Arciuch, Valeria Gabriela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Overview of Genetically Engineered Mouse Models of Papillary and Anaplastic Thyroid Cancers: Enabling Translational Biology for Patient Care Improvement.

    No full text
    The prognosis from thyroid cancer subtypes in humans covers a spectrum from "cured at almost 90%" to "100% lethal." Invasive and poorly differentiated forms of thyroid cancer are among the most aggressive human cancers, and there are few effective therapeutic options. Genetically engineered mice, based on mutations observed in patients, can accurately recapitulate the human disease and its progression, providing invaluable tools for the preclinical evaluation of novel therapeutic approaches. This overview details models developed to date as well as their uses for identifying novel anticancer agents. © 2015 by John Wiley & Sons, Inc
    corecore