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1. Introduction 

The development of thyroid cancer is a multifactorial and multistep process. Several factors 

are thought to predispose people to thyroid cancer, including genetics, environment, and 

sex hormones. The incidence of thyroid cancer is three to four times higher in women than 

in men (Libutti, 2005; Machens et al., 2006). This difference in incidence between genders 

suggests that the growth and outcome of thyroid tumors may be influenced by female sex 

hormones, particularly E2, which has been widely implicated in the development and 

progression of several cancers, such as breast, ovarian and prostate cancer (Arnold et al., 

2007; Stender et al., 2007). Animal studies support these epidemiological data, and suggest 

that exogenous estrogen (17ǃ-estradiol, E2) can promote thyroid tumors (Mori et al., 1990; 

Thiruvengadam et al., 2003).  

Several studies have been carried out to address the role of estrogens in the pathogenesis of 

proliferative and neoplastic disorders. Although the precise mechanism still remains ill-

defined, a range of plausible mechanisms explaining their carcinogenic effects has been 

proposed. On one hand, estrogens may promote cellular proliferation through their 

receptor-mediated activity (Arnold et al., 2007; Lee et al., 2005). In addition, the natural 

estrogen E2 or its metabolites 2- hydroxy, 4-hydroxy, and 16-ǂ-hydroxy-estradiol (2-OH-E2, 

4-OH-E2, and 16-ǂ-OH E2) can cause neoplastic transformation through a direct genotoxic 

effect, increasing the spontaneous mutation rate of normal cells (Cavalieri et al., 1997).  

In this review, we will analyze the role of estrogen signaling in the proliferation and 

transformation of the thyroid gland, with a special emphasis on the cross-talk between 

estrogen signaling and the PI3K pathway. 

2. Thyroid cancer 

Thyroid carcinoma is the most common and prevalent of all endocrine malignancies, 

accounting for more than 95% of all endocrine-related cancers (Hodgson et al., 2004; Jemal et 

al., 2009). Papillary and follicular carcinomas (PTC and FTC respectively) are differentiated 

tumors arising from thyroid epithelial cells (thyrocytes), while medullary carcinoma 

originates from parafollicular cells. PTC is by far the most common type of thyroid cancer, 

representing up to 80% of all thyroid malignancies. Anaplastic carcinomas are 

undifferentiated tumors deriving from thyroid epithelial cells. They are usually lethal with 
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no effective system therapy. The factors leading to thyroid carcinoma development are not 

fully understood despite some well-established associations, such as between ionizing 

radiation and papillary carcinoma, and between iodine deficiency and follicular carcinoma.  

From the molecular point of view, papillary and follicular thyroid cancers are completely 
different diseases. This notion is supported by dissimilar molecular initiating events leading 
to neoplastic transformation and by differences in DNA ploidy level (PTCs are generally 
diploid, FTCs aneuploid) (Handkiewicz-Junak et al., 2010). 

Follicular Carcinoma Papillary Carcinoma Anaplastic Carcinoma 

RAS: 20-50% BRAF: 40-45% TP53: 50-80% 

PAX8-PPAR┛: 20-35% RAS: 10-20% BRAF: 20-40% 

PI3K pathway: 20% RET-PTC: 10-30% RAS: 20-40% 

  PI3K pathway: 20-50% 

Table 1. Most frequent genetic alterations in thyroid cancer 

The genetic alterations found in PTC primarily affect two central signalling pathways in 
thyroid cells: TSH receptor (TSHR)-mediated signalling and mitogen-activated protein 
kinase (MAPK) pathways (Kim and Zhu, 2009; Lemoine et al., 1998; Nikiforov, 2008). Three 
important initiating events, RET/PTC (rearranged during transfection/ papillary thyroid 
cancer), RAS (resistance to audiogenic seizures) and BRAF mutations, are considered 
mutually exclusive (Fagin, 2004).  BRAF mutation and RET/PTC rearrangements differ to 
some extent in their effects on the shared oncogenic pathway, resulting more frequently in 
the classic or the solid variant of PTC, respectively, while RAS mutations are more likely to 
induce the follicular variant of PTC (Xing, 2005). 

Follicular carcinomas are often characterized by RAS mutations (up to 50%) and PAX8-
PPAR┛ rearrangements (20–35%), which lead to a mutant protein incapable of trans-
activating a PPARǄ signal (Gilfillan, 2010). Phosphatidylinositol 3-kinase (PI3K)/AKT 
alterations are frequently found in FTC and, even more distinctly, in ATC. In FTC, 
phosphorylation of AKT, the key player in this pathway, is by far more frequent than that of 
ERK (Liu et al., 2008). 

Anaplastic thyroid carcinomas (ATCs) comprise 2% of thyroid malignancies, and are 
usually lethal, with no effective therapy (Are and Shaha, 2006). Dedifferentiation, a common 
hallmark of ATC, is manifested by a loss of specific thyroid cell characteristics and 
functions, including expression of thyroglobulin, thyroid peroxidase, thyroid stimulating 
hormone receptor and the Na/I symporter (Neff et al., 2008; Smallridge et al., 2009). 
Molecular signature events that characterize ATC involve either BRAF activation or 
sustained hyperactivation of the PI3K/AKT cascade, together with TP53 loss or inactivation 
(Kouniavsky and Zeiger, 2010). 

3. Physiological functions of estrogen and estrogen receptors 

3.1 Estrogen production  

Estrogens are a group of steroid compounds acting as the primary female sex hormones. 
Estrogens regulate several physiological processes, including cell growth and development, 
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not only in the reproductive tract but also in other tissues such as bone, brain, liver, 
cardiovascular system, and endocrine glands.  

Although estrogens are present in both men and women, their levels are significantly higher 
in women of reproductive age. They are mainly produced by the adrenal cortex and ovary. 
The three major naturally occurring estrogens in women are: estrone, estradiol and estriol 
(Speroff et al., 1999). In premenopausal women, 17ǃ-estradiol (E2), produced by the ovary, 
is the estrogen formed in the largest quantity and is the most potent since it has the highest 
affinity for estrogen receptors. In premenopausal women, the level of circulating E2 varies 
from 40 to 400 pg/mL during the menstrual cycle (Ruggiero et al., 2002). After menopause, 
the level of E2 drops to less than 20 pg/mL (Jones, 1992). The second endogenous estrogen 
is estrone (E1), a less potent metabolite of E2. Estrone is produced from androstenedione in 
adipose tissue. In postmenopausal women, the ovary ceases to produce E2 while the adrenal 
gland continues to produce androstenedione, with the result that the level of estrone 
remains unchanged while the level of E2 falls significantly. The third endogenous estrogen 
is estriol (E3), also a metabolite of E2. E3 is the main estrogen produced by the placenta 
during pregnancy, and is found in smaller quantities than E2 and E1 in nonpregnant women 
(Jones, 1992; Ruggiero et al., 2002).  

3.2 Estrogen receptors and their ligands 

The actions of estrogens occur through activation of estrogen receptors (ERǂ, ERǃ and 
GPR30). ERǂ was initially described in 1973 (Jensen and De Sombre, 1973) while ERǃ was 
identified much later (Kuiper et al., 1996). ERǂ and ERǃ are encoded by separate genes, 
ESR1 and ESR2, respectively, which share similarities in the DNA-binding domain (97% 
amino acid similarity) and ligand-binding domain (60% amino acid similarity) (Hall et al., 
2001). These two ERs differ in their tissue distributions (Kuiper et al., 1997; Dechering et al., 
2000), suggesting that ERǂ and ERǃ might have different physiological functions. It has also 
been demonstrated that in many systems the activity of ERǃ is opposed to that of ERǂ. For 
example, in breast cancer cells, ERǂ is the receptor responsible for E2-induced proliferation, 
whereas activation of ERǃ inhibits this effect (Strom et al., 2004). In the uterus, E2 induces 
proliferation of both epithelial and stromal cells through ERǂ, which is the predominant ER 
in the mature organ, while in the immature uterus, ERǂ and ERǃ are found at similar 
expression levels in both epithelium and stroma, and ERǃ mediates the action of E2 as a 
suppressor of cell proliferation against activation of ERǂ by E2 (Weihua et al., 2000).  

G protein-coupled receptor 30 (GPR30), a novel transmembrane ER, was identified in 
different cells by four laboratories between 1996 and 1998 (Takada et al., 1997; Owman et al., 
1996; Carmeci et al., 1997; O’Dowd et al., 1998). Since its ligand was unknown at that time, it 
was named based on its homology to the G protein-coupled receptor (GPCR) super-family. 
In addition, this receptor was found to be associated with ER expression in breast cancer cell 
lines (Carmeci et al., 1997). Later in 2000, Filardo et al. demonstrated that estrogen promptly 
activated ERK1/2 in two breast cancer cell lines, MCF-7 and SKBR3, with the cell line SKBR3 
non-expressing ERs. These results demonstrated that estrogen might be a potential ligand 
for GPR30 (Filardo et al., 2000). This fact was further confirmed by the observation that 
estrogen did not activate ERK1/2 in the breast cancer cell line MDA-MB-231 without GPR30 
expression, whereas ERK1/2 was activated by estrogen after GPR30 transfection into the 
cells (Filardo et al., 2000). Therefore, GPR30 is necessary for the activation of ERK1/2 by 
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estrogen. So far, GPR30 has been detected in numerous human tissues such as heart, liver, 
lung, intestine, ovary, brain, breast, uterus, placenta and prostate (He et al., 2009; Filardo et 
al., 2006; Zhang et al., 2008; Haas et al., 2007; Hugo et al., 2008). 

3.3 Genomic and non-genomic actions of estrogen receptors 

In the classical, genomic estrogen-signaling pathway, estradiol (E2)-activated ERǂ translocates 
to the nucleus, dimerizes, and binds to the 15-bp palindromic estrogen response element (ERE) 
or interacts with other transcription factors on target genes, recruits coactivators, and 
stimulates gene transcription thereby promoting cell proliferation (Klinge, 2000). ERǂ interacts 
with a number of coactivators and corepressors in a ligand-dependent manner (Klinge, 2000). 
ERǂ may also function in a non-traditional manner, interacting with other DNA-binding 
transcription factors such as activator protein 1 (AP-1) or Sp-1, that in turn bind their cognate 
DNA elements, leading to remodeling of chromatin, and interactions with components of the 
basal transcription machinery complex (Ascenzi et al., 2006; Deroo and Korach, 2006). 

Another more rapid mechanism of estrogen action is termed ‘non-genomic’ or ‘membrane-

initiated’ because it involves E2 activation of plasma membrane-associated ERǂ or ERǃ and 

leads to rapid activation of intracellular signaling pathways, e.g., ERK1/2 and PI3K/AKT 

(Wong et al., 2002; Watson et al., 2007; He et al., 2009). It can also result in an increase of Ca2+ 

or nitric oxide and the promotion of cell cycle progression. The ERs may be targeted to the 

plasma membrane by adaptor proteins such as caveolin-1 or Shc (Kim et al., 2008). GPR30 

also activates ERK1/2 and PI3K/AKT signaling, although its exact role in estrogen action 

remains controversial (Pedram et al., 2006). GPR30 ligands, for example, estrogen (Muller et 

al., 1979), tamoxifen (Dick et al., 2002) and ICI 182780 (Hermenegildo and Cano, 2000) bind 

to GPR30, and activate heterotrimeric G proteins, which then activate Src and adenylyl 

cyclase (AC) resulting in intracellular cAMP production. Src is involved in matrix 

metalloproteinases (MMP) activation, which cleave pro-heparan-bound epidermal growth 

factor (pro-HB-EGF) and release free HB-EGF. The latter activates EGF receptor (EGFR), 

leading to multiple downstream events such as activation of phospholipase C (PLC), PI3K, 

and MAPK. Activated PLC produces inositol triphosphate (IP3), which further binds to IP3 

receptor and leads to intracellular calcium mobilization. The activation of MAPK and PI3K 

results in activation of numerous cytosolic pathways and nuclear proteins, which further 

regulate transcription factors such as serum response factor and members of the E26 

transformation specific (ETS) family by direct phosphorylation (Posern and Treisman, 2006; 

Gutierrez-Hartmann et al., 2007).  

The non-genomic pathway may cross-talk with the genomic pathway, since ERǂ can be 
translocated from the membrane into the nucleus both in a E2-dependent or independent 
manner (Lu et al., 2002). It has also been demonstrated that E2-induced ERK activation 
stimulates the expression of AP-1-mediated genes via both serum response factor ELK-1 (ER 
activated in the membrane) and the recruitment of coactivators to AP-1 sites on gene 
promoters by the nuclear ER (Ascenzi et al., 2006). The intricate relationship between 
membrane and nuclear effects induced by estrogens has also been observed in the 
regulation of many other genes including PI3K (Ascenzi et al., 2006).  

Therefore, integrative signaling by E2 from several places in the cell can lead to both rapid 
and sustained actions, which synergize to provide plasticity for cell response. 
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3.4 Estrogen receptors in the mitochondria 

Glucocorticoid and thyroid hormones have been shown to modify the levels of mtDNA-
encoded gene transcripts. These effects are mediated through direct interactions of their 
receptors with mtDNA. It has also been established that thyroid hormone can cause the 
direct stimulation of mitochondrial RNA synthesis (Casas et al., 1999; Enriquez et al., 1999) 
and that a variant form of the thyroid hormone receptor is imported in and localized within 
liver mitochondria (Casas et al., 1999; Wrutniak et al., 1995).  

These findings suggest that mitochondria could also be a target site for the action of 
estrogens. Monje and colleagues (Monje and Boland 2001; Monje et al., 2001) demonstrated 
the presence of both ERǂ and ERǃ in mitochondria of rabbit uterine and ovarian tissue, and 
ER translocation into mitochondria suggests the presence of E2 effects on mitochondrial 
function and protein expression (Chen et al., 2004). The mitochondrial genome contains 
estrogen response elements (ERE)-like sequences (Demonacos et al., 1996; Sekeris et al., 
1990). Furthermore, several studies have detected the presence of estrogen-binding proteins 
(EBPs) in the organelle (Grossman et al., 1989; Moats and Ramirez 2000). Estrogen treatment 
increases the transcript levels of several mitochondrial DNA (mtDNA)-encoded genes in rat 
hepatocytes and human Hep G2 cells (Chen et al., 1996; Chen et al., 1998).  

Estrogen response elements have been found in the D-loop, in the master regulatory region, 
and within the structural genes of the mtDNA (Demonacos et al., 1996). As a consequence, 
E2 may exert coordinated effects on both nuclear and mitochondrial gene expression.  E2 
can increase mtDNA transcripts for cytochrome oxidase IV subunits I and II in cultured 
cancer cells (Chen et al., 2004). E2 profoundly affects mitochondrial function in cerebral 
blood vessels, enhancing efficiency of energy production and suppressing mitochondrial 
oxidative stress by increasing protein levels of Mn-SOD and aconitase, and stabilizing 
mitochondrial membrane (Stirone et al., 2005).  

The mechanisms of ER translocation into mitochondria are still quite elusive but recent data 
in MCF7 cells demonstrated that human ERǃ posses a putative internal mitochondrial 
targeting peptide signal to the organelle (Chen et al., 2004). These authors observed that 
around 12% of total cellular ERǂ and 18% of ERǃ is present in the mitochondrial fraction in 
E2-treated MCF7 cells. Furthermore, the localization of both ERǂ and ERǃ to mitochondria 
in response to E2-treatment is accompanied by a concomitant time- and concentration-
dependent increase in the transcript levels of the mtDNA-encoded genes (Chen et al., 2004). 

3.5 Target molecules of estrogen receptors in the thyroid gland 

Besides the adrenal cortex and ovary, also the human thyroid gland has the ability to 
synthesize estrogens and such ability seems to be higher in women than men (Dalla Valle et 
al., 1998). In the thyroid gland, E2 provokes a considerable increase in the thyroid weight, 
stimulates thyroid iodide uptake, enhances thyroperoxidase activity, and increases the level 
of T3 (Lima et al., 2006). 

ERK1/2 regulate various cellular activities, such as gene expression, mitosis, differentiation, 
proliferation, and cell survival/apoptosis (Roberts and Der, 2007; Dunn et al., 2005). Zeng and 
colleagues have demonstrated that E2 can activate ERK1/2 in the thyroid by inducing its 
phosphorylation (Zeng et al., 2007). ERK1/2 activation by E2 depends on the interaction 
between estradiol and ERǂ (Zeng et al., 2007).  
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Bcl-2 family proteins play a central role in controlling mitochondrial-mediated apoptosis. They 

include proteins that suppress apoptosis such as Bcl-2 and Bcl-XL, and proteins that promote 

apoptosis such as Bax, Bad and Bcl-XS (Antonsson and Martinou, 2000). Bcl-2 proteins localize 

or translocate to the mitochondrial membrane and modulate apoptosis by permeabilization of 

the inner and/or outer membrane, leading to the release of citochrome c or stabilization of the 

barrier function. Bcl-2 family members are altered in thyroid cancer (Kossmehl et al., 2003) and 

their levels are regulated by estrogen in some cell systems (Song and Santen, 2003). The 

antiapoptotic member Bcl-2 is up-regulated by E2 and by the ERǂ agonist PPT, but down-

regulated by the ERǃ agonist DPN in thyroid cancer cells, suggesting that ERǂ induces Bcl-2 

expression whereas ERǃ reduces it (Zeng et al., 2007). In addition, it has been shown that ERǃ 

but not ERǂ promotes the expression of Bax (Lee et al., 2005; Zeng et al., 2007). 

Recent work on the WRO thyroid cancer cells revealed that E2 increases cathepsin D 
transcription and that cathepsin D expression is inhibited upon siRNA-mediated 
knockdown of ERǂ and ERǃ (Kumar et al., 2010). Cathepsin D is a classical E2 target gene 
regulated by Sp1-ERǂ promoter binding (Wang et al., 1997). It is well established that 
cathepsin D expression is elevated in thyroid tumors and correlates with disease 
aggressiveness (Leto et al., 2004).  

The expression of another classical E2 target gene, cyclin D1 (Pestell et al., 1999), is stimulated 

by E2 in thyroid cancer cell lines, and co-treatment with siERǂ and siERǃ shows roles for ERǂ 

and ERǃ in regulating cyclin D1 transcription. E2 regulation of cyclin D1 transcription involves 

ERǂ-Sp1 (Castro-Rivera et al., 2001) and AP-1-ERǂ (Liu et al., 2002) interactions.  

In Nthy-ori3-1 and BCPAP cells (derived from thyroid carcinoma), ERǂ was found to be 

complexed with Hsp90 and AKT (Rajoria et al., 2010). The complex of Hsp90 and AKT with 

ERǂ has major implications for its non-genomic signaling. In the presence of E2, Hsp90 

dissociates, allowing ERǂ to dimerize and induce gene expression. At the same time, AKT is 

also rendered free to participate in the signal transduction cascade.  

Rajoria and colleagues observed that E2 dramatically increases the ability of thyroid cells to 
adhere (137-140%) and migrate (27-75%). They also found downregulation of ǃ-catenin in 
the thyroid cells treated with E2 (Rajoria et al., 2010). 

4. PI3K-AKT pathway 

In 1991, three independent research groups identified the gene that encodes for the 

serin/threonin kinase AKT/PKB (Jones et al., 1991; Bellacosa et al., 1991; Coffer and 

Woodgent, 1991). AKT plays a major role in cell proliferation, survival, adhesion, migration, 

metabolism and tumorigenesis. The effects of AKT activation are determined by the 

phosphorylation of its downstream effectors located in the cytoplasm, nucleus and 

mitochondria (Manning and Cantley, 2007; Bijur and Jope, 2003; Antico Arciuch et al., 2009). 

Mammals have three closely related PKB genes, encoding the isoforms AKT1/PKBǂ, 

AKT2/PKBǃ and AKT3/PKBǄ. Although the AKT isoforms are ubiquitously expressed, 

evidence suggests that the relative isoform expression levels differ between tissues. AKT1 is 

the mainly expressed isoform in most tissues, while AKT2 is highly enriched in insulin 

target tissues. Akt1 deficient mice show normal glucose tolerance and insulin-stimulated 

glucose clearance from blood, but display severe growth retardation (Cho et al., 2001). It has 
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also been shown that cells derived from Akt1 deficient mouse embryos are also more 

susceptible to pro-apoptotic stimuli (Chen et al., 2001). On the other hand, deficiency of 

AKT2 alone is sufficient to cause a diabetic phenotype in mice (Withers et al., 1998; Cho et 

al., 2001) and a loss-of-function mutation in AKT2 is associated with diabetes in one human 

family (George et al., 2004). 

AKT kinases are typically activated by engagement of receptor tyrosine kinases by growth 
factors and cytokines, as well as oxidative stress and heat shock. AKT activation relies on 
phosphatidylinositol 3,4,5-triphosphate (PtdIns-3,4,5-P3) which is produced from 
phosphatidylinositol 4,5-biphosphate (PtdIns-4,5-P2) by phosphatidylinositol 3-kinase 
(PI3K) (Franke et al., 1995). The interaction between the Pleckstrin homology (PH) domain 
of AKT with PtdIns-3,4,5-P3 favors its phosphorylation at two residues, one in the C-
terminal tail (Ser473) and the other in the activation loop (Thr308). Phosphorylation at Ser473 
appears to precede and facilitate phosphorylation at Thr308 (Sarbassov et al., 2005). AKT is 
phosphorylated in Ser473 by mTORC2 (Ikenoue et al., 2008), while PI-3K-dependent kinase 1 
(PDK1) accounts for the phosphorylation in Thr308 (Chan et al., 1999).  

The proliferative effects of AKT result from phosphorylation of several substrates. For 
example, GSK3┚ once phosphorylated is inactivated and this prevents degradation of cyclin 
D1 (Diehl et al., 1998). Furthermore, AKT activation leads to increased translation of cyclin 
D1 and D3 transcripts via mTOR (Muise-Helmericks et al., 1998). AKT phosphorylates the 
cell cycle inhibitors p21WAF1 and p27Kip1 inducing their cytoplasmic retention (Testa and 
Bellacosa, 2001).  

AKT activity prevents apoptosis through the phosphorylation and inhibition of pro-

apoptotic mediators such as Bad, FOXO family members, and IκB kinase-ǃ (IKK-ǃ) (Datta et 

al., 1999). AKT activity also attenuates the response of cells to the release of cytochrome c 

into the cytoplasm (Kennedy et al., 1999). 

AKT can also antagonize p53-mediated cell cycle checkpoints by modulating the subcellular 

localization of Mdm2. Phosphorylation of Mdm2 by AKT triggers its localization to the 

nucleus, where Mdm2 can complex with p53 to promote its ubiquitin/proteasome-mediated 

degradation (Mayo and Donner, 2001). 

The crucial role of the PI3K signaling cascade in the pathogenesis of thyroid neoplastic 
disorders has been recently confirmed by the development and study of a relevant mouse 
model (Yeager et al., 2007, 2008; Miller et al., 2009), as well as by solid clinicopathological 
data (Garcia-Rostan et al., 2005; Hou et al., 2007, 2008; Vasko and Saji, 2007; Wang et al., 
2007). Thyrocyte-specific deletion of the Pten tumor suppressor constitutively activates the 
PI3K signaling cascade, leading to hyperplastic thyroid glands at birth, and to the 
development of thyroid nodules and follicular adenomas by 6-8 months of age (Yeager et 
al., 2007) and thyroid carcinomas by one year of age (Antico Arciuch et al., 2010). 

5. PI3K-estrogen cooperation during proliferation 

The Pten mouse model of thyroid disease displays a unique and remarkable characteristic: 
the higher proliferative index of female mutant thyrocytes, compared with males. This 
difference leads to increased cellularity in the thyroids of female mutants at a young age, to 
an increased incidence of thyroid adenomas in mutant females at 8 months of age (Yeager et 
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al., 2007), and to an increased incidence of thyroid carcinomas in mutant females at one year 
of age (Antico Arciuch et al., 2010). The direct role of estrogen signaling in determining this 
difference in proliferative response to PI3K activation is underlined by the fact that these 
effects could be completely reversed by estrogen depletion in the females, and by slow-
release estrogen pellet implantation in the males. 

Several groups had anticipated a role for estrogen in thyroid proliferation, based on the 
effects of estradiol on thyroid carcinoma cells in culture (Manole et al., 2001; Vivacqua et al., 
2006; Chen et al., 2008; Kumar et al., 2010; Rajoria et al., 2010). The Pten mouse model 
represents the first in vivo validation of the direct role played by estrogen in establishing the 
increased prevalence of thyroid disorders in the female. 

 

Fig. 1. Schematic model of the cooperation between estrogen signaling and PI3K activation. 

The analysis of Pten mutant mice also shed some light on the molecular basis of the 
differential thyrocyte proliferative index and risk of adenoma and carcinoma development 
between male and female mutant mice. Genetic approaches, by crossing Pten mutant mice 
and p27 mutant mice, and cell culture-based experiments have provided evidence that these 
gender-based differences in this mouse model are due, at least in part, to the ability of 
estrogens to down-regulate p27 levels through mechanisms that include transcriptional 
regulation, in addition to the known effects on p27 protein degradation through regulation 
of Skp2 (Antico Arciuch et al., 2010; Foster et al., 2003). 

Thus it is conceivable that, in thyroids harboring mutations that confer elevated proliferative 
signals and thus a low cell cycle progression threshold, E2-mediated p27 depletion further 
increases the thyrocyte proliferative index (Figure 1).  

Additional mechanisms, including E2-mediated mitochondrial effects, are also likely to 
contribute to this phenotype. Maintenance of a normal intracellular redox status plays an 
important role in such processes as DNA synthesis, gene expression, enzymatic activity, and 
others. Signaling cascades involving protein tyrosine kinases can be enhanced by oxidative 
inhibition of protein tyrosine phosphatases, and pathways involving NF-kB, JNK, p38 MAPK, 
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and AP-1 are strongly responsive to redox regulation (Droge, 2002). Recent data have 
suggested that physiological concentrations of E2 trigger a rapid production of intracellular 
reactive oxygen species (ROS) in endothelial and epithelial cells, and that E2-induced DNA 
synthesis is at least in part mediated by ROS signaling in these cells (Felty et al., 2005; Felty, 
2006). This notion is particularly intriguing, since E2-mediated ROS production in thyroid 
follicular cells would have two effects: an immediate stimulation of cell proliferation, and a 
long-term accumulation of oxidative DNA damage. Furthermore, these effects would be 
further enhanced if PI3K activation resulted in an alteration of the thyrocyte antioxidant and 
detoxification system. Strikingly, in an ongoing proteomic effort (manuscript in preparation), 
we have recently identified Glutathione S-transferase Mu 1 (GSTM1), an enzyme important for 
the reduction (detoxification) of hydrogen peroxide, as one of the most significantly down-
regulated proteins in mutant thyroids, suggesting that, indeed, PI3K-mediated GSTM1 
reduction might indeed further amplify the effects of ROS in the thyroid. 

Finally, the increased expression level of Tpo, Duox1 and Slc5a5 genes in female mice, 
irrespective of their genotype, strongly suggests that estrogen has a significant role in their 
transcriptional regulation, providing additional targets for future studies on the role of 
estrogen in the pathophysiology of the thyroid gland. 

6. Conclusion 

A role for estrogen in thyroid proliferation has been proposed for several years, based on 
the analysis of the effects of estrogen on thyroid cells in culture. Now, for the first time, our 
hormone manipulation experiments in a relevant mouse model of thyroid proliferative 
disorders and neoplastic transformation have provided in vivo evidence that circulating 
estrogens increase thyroid follicular cells proliferation. It is tempting to suggest that the 
relatively mild effect of estrogens on thyroid cells is uncovered and amplified by oncogenic 
events lowering the thyrocyte proliferation threshold. Further studies will validate this 
hypothesis in the context of different oncogenic mutations. 
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