33 research outputs found

    Insulin secretory and antidiabetic actions of Heritiera fomes bark together with isolation of active phytomolecules

    Get PDF
    In folklore, Heritiera fomes (H. fomes) has been extensively used in treatment of various ailments such as diabetes, cardiac and hepatic disorders. The present study aimed to elucidate the antidiabetic actions of hot water extract of H. fomes (HWHF), including effects on insulin release from BRIN BD11 cells and isolated mouse islets as well as glucose homeostasis in high-fat-fed rats. Molecular mechanisms underlying anti-diabetic activity along with isolation of active compounds were also evaluated. Non-toxic concentrations of HWHF stimulated concentration-dependent insulin release from isolated mouse islets and clonal pancreatic β-cells. The stimulatory effect was potentiated by glucose and isobutyl methylxanthine (IBMX), persisted in presence of tolbutamide or a depolarizing concentration of KCl but was attenuated by established inhibitors of insulin release such as diazoxide, verapamil, and Ca(2+) chelation. HWHF caused depolarization of the β-cell membrane and increased intracellular Ca(2+). The extract also enhanced glucose uptake and insulin action in 3T3-L1 differentiated adipocytes cells and significantly inhibited in a dose-dependent manner starch digestion, protein glycation, DPP-IV enzyme activity, and glucose diffusion in vitro. Oral administration of HWHF (250 mg/5ml/kg b.w.) to high-fat fed rats significantly improved glucose tolerance and plasma insulin responses and it inhibited plasma DPP-IV activity. HWHF also decreased in vivo glucose absorption and intestinal disaccharidase activity while increasing gastrointestinal motility and unabsorbed sucrose transit. Compounds were isolated from HWHF with similar molecular weights to quercitrin (C(21) H(20) O(11)) ranging from 447.9 to 449.9 Da which stimulated the insulin release in vitro and improved both glucose tolerance and plasma insulin responses in mice. In conclusion, H. fomes and its water-soluble phytochemicals such as quercitrin may exert antidiabetic actions mediated through a variety of mechanisms which might be useful as dietary adjunct in the management of type 2 diabetes

    Identification of Multiple Pancreatic and Extra-Pancreatic Pathways Underlying the Glucose-Lowering Actions of Acacia arabica Bark in Type-2 Diabetes and Isolation of Active Phytoconstituents

    Get PDF
    Acacia arabica is used traditionally to treat a variety of ailments, including diabetes. This study elucidated the antidiabetic actions of A. arabica bark together with the isolation of bioactive molecules. Insulin secretion and signal transduction were measured using clonal β cells and mouse islets. Glucose uptake was assessed using 3T3-L1 adipocytes, and in vitro systems assessed additional glucose-lowering actions. High-fat-fed (HFF) obese rats were used for in vivo evaluation, and phytoconstituents were isolated and characterised by RP-HPLC followed by LC-MS and NMR. Hot-water extract of A. arabica (HWAA) increased insulin release from clonal β cells and mouse islets by 1.3–6.8-fold and 1.6–3.2-fold, respectively. Diazoxide, verapamil and calcium-free conditions decreased insulin-secretory activity by 30–42%. In contrast, isobutylmethylxanthine (IBMX), tolbutamide and 30 mM KCl potentiated the insulin-secretory effects. The mechanism of actions of HWAA involved membrane depolarisation and elevation of intracellular Ca2+ together with an increase in glucose uptake by 3T3-L1 adipocytes, inhibition of starch digestion, glucose diffusion, dipeptidyl peptidase-IV (DPP-IV) enzyme activity and protein glycation. Acute HWAA administration (250 mg/5 mL/kg) enhanced glucose tolerance and plasma insulin in HFF obese rats. Administration of HWAA (250 mg/5 mL/kg) for 9 days improved glucose homeostasis and β-cell functions, thereby improving glycaemic control, and circulating insulin. Isolated phytoconstituents, including quercetin and kaempferol, increased insulin secretion in vitro and improved glucose tolerance. The results indicate that HWAA has the potential to treat type 2 diabetes as a dietary supplement or as a source of antidiabetic agents, including quercetin and kaempferol

    Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus

    Get PDF
    Diabetes mellitus is a chronic complication that affects people of all ages. The increased prevalence of diabetes worldwide has led to the development of several synthetic drugs to tackle this health problem. Such drugs, although effective as antihyperglycemic agents, are accompanied by various side effects, costly, and inaccessible to the majority of people living in underdeveloped countries. Medicinal plants have been used traditionally throughout the ages to treat various ailments due to their availability and safe nature. Medicinal plants are a rich source of phytochemicals that possess several health benefits. As diabetes continues to become prevalent, health care practitioners are considering plant-based medicines as a potential source of antidiabetic drugs due to their high potency and fewer side effects. To better understand the mechanism of action of medicinal plants, their active phytoconstituents are being isolated and investigated thoroughly. In this review article, we have focused on pharmacologically active phytomolecules isolated from medicinal plants presenting antidiabetic activity and the role they play in the treatment and management of diabetes. These natural compounds may represent as good candidates for a novel therapeutic approach and/or effective and alternative therapies for diabetes

    Evaluation of the Antidiabetic and Insulin Releasing Effects of A. squamosa, Including Isolation and Characterization of Active Phytochemicals

    Get PDF
    Annona squamosa is generally referred to as a ‘custard apple’. Antidiabetic actions of hot water extract of Annona squamosa (HWAS) leaves together with isolation of active insulinotropic compounds were studied. Insulin release, membrane potential and intracellular Ca2+ were determined using BRIN-BD11 cells and isolated mouse islets. 3T3L1 adipocytes and in vitro models were used to determine cellular glucose uptake, insulin action, starch digestion, glucose diffusion, DPP-IV activity and glycation. Glucose intolerant high-fat fed rats were used for in vivo studies. Active compounds were isolated and characterized by HPLC, LCMS and NMR. HWAS stimulated insulin release from clonal β-cells and mouse islets. Using fluorescent indicator dyes and modulators of insulin secretion, effects could be attributed to depolarization of β-cells and influx of Ca2+. Secretion was stimulated by isobutylmethylxanthine (IBMX), tolbutamide or 30 mM KCl, indicating additional non-KATP dependent pathways. Extract stimulated cellular glucose uptake and insulin action and inhibited starch digestion, protein glycation, DPP-IV enzyme activity and glucose diffusion. Oral HWAS improved glucose tolerance and plasma insulin in high-fat fed obese rats. Treatment for 9 days with HWAS (250 mg/5 mL/kg), partially normalised energy intake, body weight, pancreatic insulin content, and both islet size and beta cell mass. This was associated with improved oral glucose tolerance, increased plasma insulin and inhibition of plasma DPP-IV activity. Isolated insulinotropic compounds, including rutin (C27H30O16), recapitulated the positive actions of HWAS on beta cells and in vivo glucose tolerance and plasma insulin responses. Annona squamosa is attractive as a dietary adjunct in treatment of T2DM and as a source of potential antidiabetic agents including rutin

    Polyphenol-rich leaf of annona squamosa stimulates insulin release from BRIN-BD11 cells and isolated mouse islets, reduces (CH2O)n digestion and absorption, and improves glucose tolerance and GLP-1 (7-36) levels in high-fat- fed rats

    Get PDF
    Annona squamosa, commonly known as custard apple, is traditionally used for the treat-ment of various diseases including diabetes, cardiovascular disease (CVD), and gastritis. This study was undertaken to investigate the effects of an ethanolic (80% v/v) extract of A. squamosa (EEAS) leaves in vitro on insulin secretion from clonal pancreatic BRIN BD11 β-cells and mouse islets, in-cluding mechanistic studies on the effect of EEAS on membrane potential and intracellular calcium ion concentration. Additional in vitro glucose-lowering actions were assessed. For in vivo studies, high-fat-fed (HFF) obese/normal rats were selected. EEAS increased insulin secretion in vitro in a dose-dependent manner. This effect was linked to β-cell membrane depolarisation and cytoplasmic Ca2+ influx. In the presence of isobutyl methylxanthine (IBMX), tolbutamide, or KCl, the insulin-releasing effect of EEAS was increased, suggesting its effect was also mediated via a KATP-independ-ent pathways. EEAS inhibited insulin glycation, glucose absorption, and DPP-IV enzyme activity in vitro and enhanced glucose uptake and insulin action in 3T3L1 cells. In vivo, gut motility, food intake, glucose tolerance, plasma insulin, and active GLP-1 (7-36) levels were improved, whereas plasma DPP-IV levels were reduced in HFF rats. EEAS attenuated the absorption of sucrose and glucose as well as decreased serum glucose levels after sucrose loading and in situ intestinal perfu-sion in non-diabetic rats. Rutin, proanthocyanidin, and squafosacin G were putatively identified as the anti-hyperglycaemic phytomolecules in EEAS using HPLC followed by LC-MS analysis. This study illustrates the potential of A. squamosa and its phytoconstituents as a source of potential anti-diabetic agents

    In vitro and in vivo antihyperglycemic activity of the ethanol extract of Heritiera fomes bark and characterization of pharmacologically active phytomolecules

    Get PDF
    Objective -- This study aimed to demonstrate the mechanistic basis of Heritiera fomes, which has traditionally been used to treat diabetes. Methods -- Clonal pancreatic β-cells and primary islets were used to measure insulin release. 3T3-L1 cells were used to analyse insulin action, and in vitro systems were used to measure further glucose-lowering activity. In vivo assessment was performed on streptozotocin (STZ)-induced type-2 diabetic rats and reversed-phase-HPLC followed by liquid chromatography mass spectrometry (LC-MS) to detect bioactive molecules. Key findings -- Ethanol extract of Heritiera fomes (EEHF) significantly increased insulin release with stimulatory effects comparable to 1 µM glucagon-like peptide 1, which were somewhat reduced by diazoxide, verapamil and calcium-free conditions. Insulin release was stimulated by tolbutamide, isobutyl methylxanthine and KCl. EEHF induced membrane depolarization and increased intracellular Ca2+ levels. EEHF enhanced glucose uptake in 3T3L1 cells and decreased protein glycation. EEHF significantly inhibited postprandial hyperglycaemia following sucrose loading and inversely elevated unabsorbed sucrose concentration in the gut. It suppressed glucose absorption during in situ gut perfusion. Furthermore, EEHF improved glucose tolerance, plasma insulin and gut motility, and decreased plasma dipeptidyl peptidase IV activity. Procyanidins, epicatechin and proanthocyanidins were some of the identified bioactive constituents that may involve in β-cell actions. Conclusions -- This study provides some evidence to support the use of H. fomes as an antidiabetic traditional remedy
    corecore