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Abstract

Acacia arabica commonly known as “babul” has been widely used for the treatment of
numerous diseases, including diabetes due to their potential pharmacological actions. The
aim of the present study was to investigate the insulinotropic and anti-diabetic properties of
ethanol extract of Acacia arabica (EEAA) bark through in vitro and in vivo studies in high
fat-fed (HFF) rats. EEAA at 1.6-5000 pg/mL significantly increased (p<0.05-0.001) insulin
secretion with 5.6 mM and 16.7 mM glucose, respectively from clonal pancreatic BRIN
BDI11 B-cells. Similarly, EEAA at 10-40 pg/mL demonstrated a substantial (p<0.05-0.001)
insulin secretory effect with 16.7 mM glucose from isolated mouse islets, with a magnitude
comparable to 1 uM glucagon-like peptide-1 (GLP-1). Diazoxide, verapamil, and calcium-
free conditions decreased insulin secretion by 25-26%. The insulin secretory effect was
further potentiated (p<0.05-0.01) with 200 puM isobutylmethylxanthine (IBMX; 1.5-fold),
200 pM tolbutamide (1.4-fold), and 30 mM KCI (1.4-fold). EEAA at 40 pg/ml, induced
membrane depolarization and elevated intracellular Ca®" as well as increased (p<0.05-0.001)
glucose uptake in 3T3L1 cells and inhibited starch digestion, glucose diffusion, dipeptidyl
peptidase-IV (DPP-IV) enzyme activity, and protein glycation by 15-38%, 11-29%, 15-64%
and 21-38% (p<0.05-0.001) respectively. In HFF rats, EEAA (250 mg/5 ml/kg) improved
glucose tolerance, plasma insulin, and GLP-1 levels, and lowered DPP-IV enzyme activity.
Phytochemical screening of EEAA revealed the presence of flavonoids, tannins and
anthraquinone. These naturally occurring phytoconstituents may contribute to the potential
anti-diabetic actions of EEAA. Thus, our finding suggests that EEAA, as a good source of

anti-diabetic constituents, would be beneficial for type 2 diabetes patients.

Keywords: Type 2 diabetes, obesity, glucose, Insulin, phytoconstituents, GLP-1
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1. Introduction

Diabetes-related mortality has alarmingly escalated in response to the rising prevalence of the
disease globally [1]. The initial manifestation of diabetes is the impediment to glucose uptake
in muscles due to insulin resistance, which causes excessive blood glucose and abnormal
accumulation at various cellular locations leading to hyperglycaemia [2]. Inadequate insulin
production and impaired muscle glucose uptake result in significantly critical complications
such as nephropathy, retinopathy, and neuropathy, as well as the production of superoxide
free radicals due to hyperglycaemia-induced protein glycation [3, 4]. Additionally, the
correlation between obesity and diabetes has an effect on several organ systems and is linked
to various cardiovascular diseases [5]. The development of atherosclerosis and a high
mortality rate, as found in type 2 diabetic patients, are particularly linked with an altered lipid
profile or dyslipidemia [6]. It has been found that 90% of individuals with type 2 diabetes are
considered to be overweight or obese, making obesity a major variable risk factor for the

development of type 2 diabetes [5].

Proper nutrition, weight maintenance, and regular physical activity are necessary to keep
glycaemic levels under control [7]. In addition, single or combined synthetic oral antidiabetic
medicines such as biguanides, sulfonylureas, DPP-IV inhibitors, thiazolidinediones,
disaccharidase inhibitors, GLP-1 and GIP analogs, or/and insulin can be employed as insulin
secretagogues/insulinotropic agents for the management of diabetes mellitus [8]. These
synthetic drugs, however, present various adverse effects including hypoglycemia, weight
gain, GIT disorders, hypersensitivity reactions, liver, and kidney diseases, and are often
unavailable and inaccessible to people residing in rural areas [9-11]. Therefore, to overcome
the drawbacks of synthetic medicines, it is crucial to search for alternative medications that

are mostly derived from natural sources such as medicinal plants and animal derived peptides

[9].

From the beginning of civilization, medicinal plants have been considered an excellent source
of therapeutics owing to their plethora of health benefits. Herbal medicines have long been
used to cure a wide range of ailments due to the presence of numerous bioactive
phytoconstituents that exhibit various pharmacological actions, and their proven efficacy,
lower incidence of adverse effects in clinical studies, and affordability have encouraged many
medical professionals to practice them in practical life [9, 12]. Over 12,000 species of

medicinal plants have been identified to exhibit insulin-releasing and glucose-lowering action
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[12]. The majority of these plants contain several classes of phytoconstituents such as
flavonoids, alkaloids, carotenoids, terpenoids, steroids, tannins, saponins, phenolic acids, and
glycosides [13, 14]. The antidiabetic activity of these compounds is generally attributed to
improvement in pancreatic B-cell function by increasing insulin secretion, decreasing
intestinal glucose absorption, or facilitating metabolism [15]. Thus, pure compounds of
medicinal plants or their crude extracts can be formulated as dietary supplements or

antidiabetic therapy to aid in the treatment of diabetes mellitus.

Acacia arabica, popularly known as Babul, is a tree belonging to the family of Leguminosae
and has been used in traditional medical practice for centuries [14]. Nearly all of its parts
including the bark, gum, leaves, roots, flowers, and pods are used as medicines. Acacia
arabica is well known around the world as a multipurpose tree and is used to treat bleeding
disorders, prolapse, leucorrhea, gastrointestinal disorder, diarrhea, constipation, and diabetes
in traditional medical practice [16]. In Ayurvedic medicine, the gum of Acacia arabica is
extensively utilized as a dietary supplement to manage diabetes [13]. Pharmacological
studies have shown that Acacia arabica has antioxidant, antidiabetic, antihypertensive,
antispasmodic, antibacterial, and antifungal properties [16]. A recent study conducted on
obese high-fat fed rats indicated that the hot water extract of Acacia arabica inhibits glucose
absorption, DPP-IV enzyme activity and improves p-cell function [13]. However, although
Acacia arabica is considered to exert glucose-lowering effects, only a few studies have been
conducted to assess its impact on insulin secretion and action [17]. Thus, the current
experiment was carried out to investigate the in vitro and in vivo antidiabetic effects of
ethanol extract of Acacia arabica (EEAA) bark to elucidate its mode of action in the

management of type 2 diabetes.
2. Materials and methods
2.1. Collection and preparation of plant extracts

Acacia arabica bark was collected and identified by a taxonomist at the Bangladesh National
Herbarium and assigned the accession number 43756 [13]. The obtained barks were rinsed,
air-dried, and then ground to a fine powder. The dry powdered (200g) bark was macerated in
1 L of 80% ethanol and agitated in an orbital shaker at a speed of 550 rpm for 48—72 h. The
filtrate was separated using Whatman no.1 filter paper and then dried off using a rotary

evaporator (BibbyRE-200, Sterilin Ltd., Newport, UK). The gummy residue was freeze-dried
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in a freeze-dryer (Varian 801 LY-3-TT, Lexington, MA, USA) and preserved at 4°C until
further assayed [8].

2.2. In vitro insulin-release studies using BRIN-BD11 cells

Clonal pancreatic BRIN-BD11 B-cells were used for examining the insulin-releasing effects
of EEAA in vitro. EEAA or insulin modulators in the presence or absence of glucose (1.1,
5.6, or 16.7 mM) were incubated with BRIN-BD11 cells in a CO, incubator at 37°C for 20
min. The effects of EEAA in the presence of insulin secretagogues or inhibitors, such as
tolbutamide (a sulphonylurea and Karp channel blocker), diazoxide (a Karp channel opener),
verapamil (a voltage-dependent Ca>” channel blocker), IBMX (a phosphodiesterase
inhibitor), 30 mM KCI, and 10 mM alanine, were studied in order to determine the insulin-
releasing pathways activated by EEAA. Membrane depolarization and Ca®" influx is induced
by KCI and alanine. Alanine mostly accomplishes this via co-transport with Na’ and

metabolism with the generation of ATP [18, 19].
2.3. Insulin-release studies using isolated mouse islets

The impact of EEAA on insulin release was also investigated by using isolated mouse islets.
Pancreatic tissue of mice (40-50 gm, b.w.) was digested with collagenase P obtained from
Clostridium histolyticum (Sigma-Aldrich, Dorset, UK) to extract the islets. Islets were
cultured for 48-72 h in a CO; incubator at 37°C. Further islets were incubated with 1.4 and
16.7 mM glucose for 1 h, with or without EEAA, alanine, and GLP-1 respectively.
Centrifugation was used to separate the supernatants, which were stored at -20°C for
radioimmunoassay to measure the insulin concentration [20]. An acid-ethanol extraction

method was employed to measure the insulin content of islet cells [21].
2.4. Membrane potential and intracellular calcium ([Caz+]i) concentration

We used a Fluorometric Imaging Plate Reader (FLIPR) Membrane Potential and [Ca®]i
assay kit (Molecular Devices, Sunnyvale, CA, USA) to determine the intensity of membrane
depolarization and [Ca2+]i in BRIN-BD11 cells treated with the EEAA. BRIN-BD11 cells
were seeded in 96-well plates and kept overnight in a CO; incubator at 37°C for adherence.
After the medium was withdrawn, the cells were pre-incubated with 100 pL of 5.6 mM
glucose KRB buffer at 37°C for 10 min. Following the addition of 100 pL of FLIPR
membrane potential or calcium dye, the cells were incubated at 37°C for 60 min. FlexStation

3 (Molecular Devices, Sunnyvale, CA, USA) was used to measure the fluctuations in signal
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intensity. Depolarising concentrations of KCI (30 mM) and alanine (10 mM) were employed

as positive controls [8, 13].
2.5. Glucose uptake

The effect of EEAA on cellular glucose uptake was assessed using adipocytes produced from
3T3L1 fibroblast cells. The cells were treated with the EEAA and kept in a CO, incubator at
37°C for half an hour in the presence or absence of 100 nM insulin. The incubation was
continued with 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose, 2-NBDG
(50 nM) for an additional 5 min. Coverslips were fixed to the slides after the cells were rinsed
with ice-cold PBS. Using a fluorescent microscope (10x magnification), magnified images of

the fluorescence intensity were taken to evaluate the glucose uptake [13, 19].
2.6. Glycation of insulin

The impact of EEAA on insulin glycation was examined as previously described [22]. To
conduct the experiment, D-glucose (246.5 mM) was incubated with human insulin (1 mg/mL)
and NaBH3;CN (0.0853 gm/mL) with or without the EEAA treatment. After 24 h of
incubation, the reaction was stopped by the addition of 0.5 M acetic acid. Measurements of

glycated and non-glycated insulin were completed using reverse-phase HPLC [8].
2.7. DPP-1V enzyme activity in vitro

Using a fluorometric technique, the effects of EEAA on the DPP-IV enzyme activity were
studied in vitro. The 96-well black-walled, clear-bottomed Greiner microplates containing 8
mU/ml of DPP-IV enzyme and 200 uM of Gly-Pro-AMC substrate were used to measure the
enzyme activity as previously described [23]. Variations in fluorescence were monitored
using the Flex Station 3 (Molecular Devices) with excitation and emission wavelengths at

370 and 440 nm with a 2.5 nm slit width, respectively [24].
2.8. Starch digestion

To investigate the impact on starch digestion, EEAA or acarbose was incubated with 100 mg
of starch solution (Sigma-Aldrich, St. Louis, MO, USA). After dilution, the mixture was
treated with thermostable o-amylase (0.01%) from Bacillus leicheniformis and
amyloglucosidase (0.1%) from Rhizopus mold (Sigma-Aldrich, St. Louis, USA). The GOD-
PAP method (Randox GL 2623) was implemented to further analyze the final samples

aliquoted for the measurement of glucose concentration [8].
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2.9. Glucose diffusion in vitro

A cellulose ester dialysis tube (CEDT) (20 cm 7.5 mm, Spectra/Por®CE layer, MWCO:
2000, Spectrum, The Netherlands) was used to test the effects of EEAA on glucose diffusion
in vitro. To perform the experiment, the tubes were filled with 2 mL of 0.9% NaCl and 220
mM glucose in the presence or absence of the EEAA (0.2-25 mg/mL), and the ends were
tightly sealed. Afterward, the CEDT was put into 50 mL Falcon conical tubes (Orange
Scientific, Orange, CA, USA) containing 0.9% NaCl (45 mL) solution and agitated in an
orbital shaker at 20 + 2°C. The samples were collected 24 h later, and the GOD-PAP method
(Randox GL 2623), as previously reported [18, 25], was used to analyze the aliquoted

samples for the detection of glucose diffusion and absorption.
2.10. Animals

The experiments were carried out on 6-8 weeks aged male Sprague Dawley rats (Envigo UK)
weighing between 200-250 g. Prior to the experiments, the animals were given access to a
high-fat diet for 6-8 weeks consisting of 20% protein, 45% fat, and 35% carbohydrates with a
total energy content of 26.15 KJ/g. A standard diet of 10% fat, 30% protein, and 60%
carbohydrates with a metabolizable energy content of 12.99 KJ/g was fed to normal rats
(Trouw Nutrition, Cheshire, UK). The animals were accommodated in regulated conditions
of 25 + 0.5°C temperature and 65-70% humidity and an automated 12 h dark-light cycle
system was installed in the animal house to maintain a day-night circadian rhythm. Before
performing the experiments, the fasting blood glucose was determined in HFF diet rats in
order to distinguish each group. HFF diet-induced obese type 2 diabetic rats were defined as
those with fasting blood glucose levels that were higher than normal (>6.0 mmol/L). The

groups were divided in the following manner:

Group 1: Lean control (Saline)

Group 2: High fat-fed diet control (Saline)

Group 3: High fat fed diet + EEAA (250 mg/5 ml/kg)
Group 4: High fat fed diet + sitagliptin (10 umol/5 ml/kg)
Group 5: High fat fed diet + vildagliptin (10 pmol/5 ml/kg)

2.11. Oral glucose tolerance
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To assess the effects of EEAA on oral glucose tolerance, the high-fat-fed rats were starved
overnight and oral gavage of glucose (18 mmol/kg, body weight (b.w.)) with or without the
treatment (250 mg/5 mL/kg, b.w.) were given to both normal and HFF rats. Samples of blood
were obtained using heparinized microvessel blood collection tubes (Sarstedt, Numbrecht,
Germany) from the tip of the tail at 0 min before and at 30, 60, 120, and 180 min after the
glucose/drug administration. Followed by centrifugation at 12,000 rpm at 4°C for 5 min, the
plasma was separated and stored at -20°C until further insulin assay. Blood glucose levels
were measured using Ascencia Contour glucose meters (Bayer, Newbury, UK) and insulin

levels were measured by a dextran-charcoal radioimmunoassay [8, 13].
2.12. DPP-1V enzyme activity in vivo

A fluorometric assay was employed to study the impact of EEAA on plasma DPP-IV enzyme
activity in high-fat-fed rats. Blood samples were taken from overnight fasted HFF rats before
(at 0 min) and after (30, 60, 120, and 180 min) oral administration of EEAA (250 mg/5
mL/kg), the DPP-1V inhibitors, vildagliptin (10 pmoL/5 mL/kg), and sitagliptin (10 pmoL/5
mL/kg) or saline (5 mL/kg). Plasma serum was separated by centrifugation and the samples
(10 pL) were incubated in 96-well microplates with 40 puL of Tris-HCI (100 mM) buffer (pH
7.4) and 50 pL of Gly-Pro-AMC (200 uM) substrate for 30 min at 37°C. Hydrolysis of the
fluorogenic substrate bonds (H-Gly-Pro) conjugated to the AMC group (H-Gly-Pro-AMC) by
the DPP-IV enzyme in the blood serum caused the formation of the fluorescent 7-Amino-4-
Methyl Coumarin (AMC). As mentioned above in the section on in vitro DPP-IV enzyme
activity, the fluorescence changes were monitored using FlexStation 3. Plasma samples
collected at 60 min were used to determine levels of active GLP-1 (7-36) using a GLP-1
(Active) ELISA Kit (EGLP-35K, Merck Millipore, Dorset, UK) [21].

2.13. Phytochemical screening

The EEAA was subjected to phytochemical screening to determine the presence or absence
of phytochemicals including glycosides, reducing sugars, flavonoids, alkaloids, terpenoids,

tannins, and anthraquinones as per previous methods [21, 26-28].

Alkaloids: Alkaloid testing was done by acidifying 2 mL of the EEAA in dilute hydrochloric
acid to which 1 mL of Dragendroff's reagent was added. The precipitate’s color change from

orange to crimson red confirmed the presence of alkaloids [26].
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Flavonoids: The presence of flavonoids was tested by mixing 4 mL of the EEAA with 1.5
mL methanol, which was then heated. Upon the addition of magnesium metal together with
2-3 drops of hydrochloric acid, the solution’s color changed to pink indicating a positive

result [26].

Tannins: To test for tannins, a few drops of 10% lead acetate were added to 2 mL of the

EEAA. The formation of white sediment suggested the presence of tannins [21].

Terpenoids: Terpenoids were tested by dissolving 1 g of the EEAA in 2mL of chloroform to
which 3mL of strong sulphuric acid was carefully added to form a layer; the presence of

terpenoids was indicated by a reddish-brown coloration on the interface [27].

Glycosides: To test for glycosides, 1 mL of the EEAA was combined with a few drops of
glacial acetic acid, and ferric chloride to form a mixture, to which concentrated sulfuric acid
was added afterward. The presence of glycoside was evidenced by the visualization of a blue-

green color [21].

Anthraquinone: To test for anthraquinones, a dry test tube was filled with about 0.5 g of the
EEAA, 5mL of chloroform, and was shaken vigorously for 5 min. After filtering the mixture,
an equal amount of 10% ammonia solution was mixed into the filtrate and the presence of
anthraquinone was confirmed upon the formation of pink-violet or red color in the lower

layer [28].

Reducing sugars: Reducing sugars were detected by mixing 1 mL of the EEAA, ImL of
distilled water, and a few (4-6) drops of Fehling’s reagent, and the mixture was heated. The

formation of a reddish-brown color confirmed the presence of reducing sugars [21].
2.14. Statistical analysis

All statistical analysis and data interpretation were conducted using Graph Pad prism 5. The
unpaired Student's t-test (nonparametric, with two-tailed p-values) and one-way or two-way
ANOVA with Sidek post hoc tests were used to analyze the data. The significance threshold

was set at p < 0.05, and values were presented as the mean = SEM.
3. Results
3.1. EEAA and insulin release from BRIN-BD11 cells

Concentration-dependent (1.6-5000 pg/mL) insulin-releasing effects of EEAA are presented
in Figure 1 (A, B). The basal rate of insulin release at 5.6 mM glucose (Figure 1A) from
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BRIN-BD11 cells was 0.89 + 0.02 ng/10° cells/20 min. The positive control, alanine (10mM)
increased the insulin-releasing rate to 4.45 + 0.54 ng/10° cells/20 min (Figure 1A; P<0.001; n
= 8). EEAA (40-5000 pg/mL) increased insulin release from 2.05 + 0.21 to 7.1 + 1.1 ng/10°
cells/20 min (Figure 1A; p < 0.05-0.001) with 5.6 mM glucose. In the presence of 16.7 mM
glucose (Figure 1B), the basal insulin rate was 1.53 + 0.12 ng/10° cells/20 min and with the
depolarising concentration of KCI (30 mM), it was increased to 8.78 = 0.69 ng/10° cells/20
min (p < 0.001). Additionally, EEAA with 16.7 mM glucose enhanced the release of insulin
from 3.05 + 0.31 to 8.86 + 1.58 ng/10° cells/20 min (Figure 1B; p < 0.05-0.001) in a dose-
dependent manner (40-5000 pug/mL). An increase in LDH release was observed with
increasing extract concentrations, however, there was no effect on cellular viability at lower

doses (Data not shown).
3.2. EEAA and insulin release from isolated mouse islets

The insulin-releasing effects of EEAA from isolated mouse islets are illustrated in figure 1C.
At 16.7 mM, the basal rate of insulin secretion from isolated mouse islets was 7.15 = 0.78
ng/10° cells/20 min. EEAA showed a significant increase (Figure 1C; p < 0.05-0.001) in
insulin secretion from 11.29 + 1.02 to 16.71 £ 1.24 with 16.7 mM glucose in a concentration-
dependent manner (10-40 pg/mL). As a positive control alanine (10 mM) and GLP-1 (10° &
10® M) significantly stimulated (Figure 1C; p < 0.001) the release of insulin from 12.27 +
0.94 to 27.53 + 1.42 at 16.7 mM glucose. However, the increase in insulin secretion by
EEAA was lower than the GLP-1 (10° & 10®M) in presence of 16.7mM glucose.

3.3. EEAA and known modulators of insulin release and, inhibitors or absence of

extracellular calcium

EEAA (40 g/mL) bark was treated with established insulin releasing modulators to assess
their insulin secretory actions (Figure 1E). The release of insulin was significantly augmented
(Figure 1E) with modulators such as 16.7 mM glucose (p < 0.05), IBMX (p < 0.001), and
tolbutamide (p < 0.001). EEAA resulted in a significant rise in insulin secretion by 1.4-fold
when combined with a depolarizing concentration of 30 mM KCI (p < 0.01; Figure 1E).
Insulin release activity was further increased following co-treatment of EEAA with IBMX
(by 1.5-fold; p < 0.05) and tolbutamide (by 1.3-fold; p < 0.01). In the presence of K channel
activator diazoxide (300 uM), L-type voltage-dependent Ca’" channels blocker verapamil (50
uM), and free extracellular Ca®’, the insulin-releasing rate was attenuated by 25-26%

respectively (Figure 1; E, F).
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3.4. EEAA and membrane depolarization and, [Ca®"]; in BRIN-BD11 cells

Depolarization of membrane potential and intracellular calcium ([Ca®'];) concentration in
clonal BRIN-BDI11 cells were assessed (Figure 2A & B). A significant induce in membrane
depolarization (94%; Figure 2A) and an increase in intracellular calcium concentration
([Ca2+]i) (80%; Figure 2B) were observed in incubation with KCI (30 mM) and alanine (10
mM). EEAA at a concentration of 40 pg/mL induced (p < 0.001) depolarization of membrane
potential by 87% (Figure 2A) followed by an increase in [Ca*']; concentration by 69%
(Figure 2B).

3.5. EEAA and glucose uptake and insulin action

The glucose analogue 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) Amino)-2-Deoxyglucose (2-
NBDG) fluorescent hexose was used to assess the effect of EEAA on glucose uptake and
insulin action using 3T3L1 differentiated adipocyte cells (Figure 2C-G). In the microscopic
fluorescence analysis, EEAA enhanced glucose uptake significantly with (p < 0.05; Figure
2G) or without (p < 0.001; Figure 2G) insulin (100 nM) when compared to the control.
Insulin alone stimulated glucose uptake by 2.6-fold (p < 0.01; Figure 2G) compared to the

control.
3.6. EEAA and glycation of insulin

EEAA showed a significant inhibitory effect on insulin glycation (Figure 1D). EEAA caused
a 21.6% inhibition at the concentration of 40 pg/mL (p < 0.05; Figure 1D), while the effect
increased to 38.4% at 200 pg/mL (p < 0.01; Figure 1D). With 44 mM aminoguanidine, the
inhibition of insulin glycation increased to 80% (p < 0.001; Figure 1D).

3.7. EEAA and starch digestion

The effects of EEAA on starch digestion are shown in Figure 2H. Acarbose (1mg/mL),
employed as a positive control, decreased enzymatic glucose liberation from starch by 72%
(data not shown). EEAA at a dose of 40—1000 pg/mL showed 14%-38% inhibitory activity (p

<0.05-0.001) in glucose liberation from starch.
3.8. EEAA and glucose diffusion in vitro

EEAA showed significant inhibitory effects on glucose diffusion and absorption (Figure 2I)
over a 24 h incubation period compared to the control group. Doses of 0.2-5 mg/mL EEAA
showed an 11% -29% inhibitory effect (p < 0.05-0.001; Figure 21).
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3.9. EEAA and DPP-IV enzyme activity in vitro

Effects of EEAA on DPP-IV enzyme activity (Figure 3A) were evaluated by an in vitro
fluorometric method. An established DPP-IV inhibitor, sitagliptin (10 uM) reduced DPP-IV
enzyme activity by 97.5% (Data not shown). At a dose of 40-5000 ng/mL EEAA, the
inhibition of the DPP-IV enzyme increased by 15%-64% (p < 0.01-0.001; Figure 3A).

3.10. EEAA and oral glucose tolerance and plasma insulin

Oral administration of EEAA (250 mg/5 mL/kg; body weight) in conjunction with glucose
(18 mmoL/5 mL/kg; body weight) showed a significant (p < 0.05; Figure 3B) reduction in
blood glucose at 30 and 60 mins compared to the HFF diet control. EEAA also increased

plasma insulin concentrations at 30 mins (p < 0.05; Figure 3C) as compared to HFF rats.
3.11. EEAA and DPP-1IV enzyme activity and active GLP-1 (7-36) Levels

EEAA (250 mg/5 mL/kg; body weight) reduced DPP-IV enzyme activity (p < 0.05-0.01;
Figure 3D) at 60 and 120 mins compared to the high-fat-fed diet control group. The standard
drugs sitagliptin and vildagliptin (10 umol/5 mL /kg), showed consistent (p < 0.001; Figure
3D) reduction in DPP-IV enzyme activity with respect to time (30 to 180 mins). Oral gavage
of EEAA (250 mg/5 mL/kg; body weight) increased the level of plasma active GLP-1 (7-36)
in the circulation by 28% (p < 0.05; Figure 3E) and this was increased to 83%-92% (p <
0.001; Figure 3E) with sitagliptin (10 pmoL/5 mL/kg) and vildagliptin (10 pmoL/5 mL/kg),

respectively.
3.12. Phytochemical screening of EEAA

To determine the presence of anticipated anti-diabetic phytochemicals, additional studies
were done (Table 1). Flavonoids, tannins, terpenoids, glycosides, and anthraquinone were

identified in EEAA (Table 1).

Table 1: Preliminary phytochemical analysis of ethanol extract of Acacia arabica bark

Group Result
Alkaloids -

Flavonoids

Tannins
Terpenoids
Glycosides

+ + 4+ 4+ o+

Anthraquinone
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The ‘+’ sign denotes the presence of phytoconstituents whereas ‘-’ sign denotes the absence
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of phytoconstituents in EEAA. The tests were carried out three times (n=3).
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4. Discussion

The gum of Acacia arabica is widely employed as an ethnomedicine due to its numerous
therapeutic benefits including glucose-lowering effects and has been scientifically proven to
possess anti-hyperglycaemic properties [29]. Previous studies reported that hot water extract
of Acacia arabica improves B-cell functions in HFF diabetic animal models [13]. However,
the molecular mechanism underlying EEAA’s antidiabetic and insulinotropic activities has
yet to be detailed [30, 31]. The objective of the present study was to investigate insulin-
releasing and glucose-lowering actions of EEAA through in vitro and in vivo studies to

explore its underlying mechanism of action for the treatment of type 2 diabetes.

In this study, the insulinotropic effects of EEAA were explored using clonal pancreatic
BRIN-BD11 cells and isolated mouse islets where EEAA stimulated insulin release in a dose-
dependent manner. The mechanisms underlying the stimulation of insulin secretion were also
investigated using non-toxic concentrations of EEAA in the presence or absence of known
modulators of B-cell function. In response to 16.7mM glucose, EEAA stimulated basal
insulin secretion. The effects of tolbutamide and membrane-depolarizing concentrations of
KCI1 (30 mM) were examined to evaluate their effects in the absence and presence of EEAA.
It is known that the action of this sulphonylurea involves the closure of Karp channels,
depolarization of the plasma membrane, and stimulation of Ca®" influx via the activation of
L-type voltage-dependent calcium channels [32]. In both conditions, EEAA increased insulin
release indicating the ability of EEAA to potentiate insulin secretion through various
mechanistic pathways including a direct effect on exocytosis or phosphatidylinositol (PI3) or
adenylate cyclase/cAMP pathway [33]. Additionally, the stimulatory activity of EEAA also
showed the involvement of ion channels in clonal pancreatic B-cells. The insulin-releasing
actions of EEAA were suppressed by the Karp-channel opener diazoxide, indicating that the
closure of Katp channels contributes to EEAA’s insulinotropic action. These findings are
consistent with our observations using the L-type voltage-dependent Ca®" channel blocker,
verapamil, which partially decreased EEAA-mediated insulin release, suggesting its
dependency on insulin release on the Ca’" channel [34]. Examining the effects of Ca®" free
buffer revealed a similar dependency on extracellular Ca®". The effects of the absence of Ca**
on insulin secretion were not fully abolished suggesting that EEAA is capable of both
inducing intracellular Ca®" mobilization and Ca®" entry. The direct observation of

intracellular Ca®" in BRIN-BDI1 cells also provided strong evidence for this finding.
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Furthermore, the phosphodiesterase inhibitor, IBMX, also potentiated the insulin-releasing

effects of EEAA, indicating the involvement of the cAMP pathway [35].

Insulin plays a key role in the regulation of glucose disposal in peripheral tissues like skeletal
muscles, adipose tissues, and the liver [36]. Recent studies have shown that the stimulation of
glucose uptake by insulin via the insulin receptor substrate 1/phosphoinositol 3-kinase (IRS-
1/P3K) and GLUT#4 translocation by muscular contraction or exercise by the activation of
AMPK is mediated by a distinctive intracellular signaling pathway [37]. Furthermore, as
skeletal muscle is the main location for using both glucose and fatty acids, insulin resistance
associated with type 2 diabetes is mostly found in this tissue [37]. In this present study, we
investigated EEAA's effects on glucose uptake in 3T3L1 adipocyte cells. It has been
observed that EEAA increases glucose uptake in 3T3L1 cells. Earlier investigations on
Acacia arabica showed the presence of kaempferol, quercetin, and gallic acids, which
stimulate AMP-activated protein kinase activity and increase GLUT4 translocation [38, 39].
A previous study has also demonstrated that quercetin promotes GLUT4 translocation by
concurrently increasing the phosphorylation of both AMPK and AKT which in turn resulted
in the stimulation of glucose uptake in skeletal muscle cells and adipose tissues [37, 40].
Therefore, the presence of flavonoids such as quercetin in EEAA may be responsible for
EEAA's potential to increase glucose transport in skeletal muscles and adipocyte cells via

activating signaling pathways [13].

Non-enzymatic glycosylation of structural proteins is speculated to be an important factor
contributing to the onset of diabetes associated complications [41]. It has been observed that
the glycation of insulin decreases its biological action. This reduced biological activity of
glycated insulin may be caused due to its decreased affinity for the insulin receptor, poor
insulin signaling, or it may function as a ligand for the receptor for advanced glycation end
products (RAGE), activating oxidative stress and pro-inflammatory pathways that result in
insulin resistance [42]. In our study, EEAA was found to decrease insulin glycation in a
concentration-dependent manner. In earlier investigations, Acacia arabica was reported to
contain well-known antioxidant constituents such as flavonoids, glycosides, quercetin, and
gallic acids [43]. Thus, the antiglycation effects demonstrated by the EEAA may be due to its
phytochemicals and antioxidant properties [44].

The effects of EEAA on a-amylase and a-glucosidase enzymes on glucose release from

starch following digestion were studied in vitro. Acarbose, an established a-glucosidase
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inhibitor decreased glucose liberation significantly. The concentration-dependent inhibition
of glucose release from starch was observed with EEAA. Previous studies found that
flavonoids are very effective in reducing the a-amylase activity and slowing down starch
digestion [45]. It is also known that increased intake of dietary fiber helps to suppress
appetite. In addition, dietary fiber impedes stomach emptying and/or delays energy and
nutrient absorption which results in lower post-prandial glucose and lipid levels [46]. Results
from previous investigations have reported the high fibre content [47] in Acacia arabica
which may also be responsible for the postprandial glucose-lowering effects of EEAA due to

slower digestion and longer duration of nutritional absorption.

Several medicinal plants have been found to limit gastrointestinal glucose absorption, which
may be a factor in how effective they are at preventing hyperglycaemia [48]. There are
different mechanisms by which medicinal plants interfere with glucose absorption into cells
such as by decreasing the gastric emptying time and obstructing the absorption of glucose
from the intestine, inhibiting disaccharidase enzymes like a-amylase and a-glucosidase and
preventing the breakdown of carbohydrates, stimulating insulin release, inhibiting
gluconeogenesis or by enhancing the uptake of glucose into peripheral cells [49]. In this
current study, a simple in vitro dialysis-based model was utilized to examine the effects of
EEAA on glucose diffusion. Although this model used constant agitation to simulate
gastrointestinal movement, it has certain limitations because it does not directly compare the
timing of cellular mechanisms for glucose absorption in the gut with the time it takes for
glucose to completely diffuse from the dialysis tube (22-26 h). Our results have depicted that
EEAA demonstrates significant dose-dependent inhibition of the movement of glucose
through the dialysis membrane. These findings are in agreement with previous findings
conducted on alloxan-induced diabetic rats and rabbits which reported that a diet containing

Acacia arabica exhibits anti-hyperglycaemic activity [50, 51].

The progression of type 2 diabetes is linked to obesity. Obesity is characterized by the
presence of non-esterified fatty acids (NEFAs) released from adipose tissue, which
contributes to insulin resistance and B-cell dysfunction, resulting in type 2 diabetes. In our
present study, EEAA improved glucose tolerance and plasma insulin significantly in HFF
diet-induced obese rats. It was observed that the tannins present in Acacia arabica improves
the release of insulin from pancreatic B-cells and restored their functionality [17].

Furthermore, flavonoids such as quercetin, catechin, and kaempferol were also reported to
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increase insulin secretion and improve glucose uptake, plasma insulin responses, and glucose
tolerance in mice [9, 13]. Therefore, it may be reasonable to assume that the anti-

hyperglycaemic effects of EEAA are attributable to these phytomolecules.

Several pharmaceutical methods have been developed to treat type 2 diabetes by focusing on
the development of oral DPP-IV inhibitors to block the degradation of the incretin hormones
GLP-1 and GIP [52]. In the current study, EEAA inhibited DPP-IV enzyme activity in vitro
in a concentration-dependent manner, which was consistent with our in vivo findings in HFF
rats. GLP-1 and GIP hormones play important roles in regulating insulin secretion and
management of type 2 diabetes by augmenting glucose-stimulated insulin secretion via the
cAMP signaling pathway [53, 54]. The combined effect of GLP-1 and GIP in stimulating
insulin secretion in a glucose-dependent manner, prolonging stomach emptying time, and
suppressing hunger, thus, significantly improving the management of postprandial
hyperglycaemia in particular [55]. EEAA also increased the levels of active GLP-1 (7-36) in
the bloodstream. Previous studies have shown that reduced levels of the antagonistic
metabolite and increased amounts of active GLP-1 can be achieved by inhibiting DPP-IV
enzyme activity, which could be beneficial in the treatment of impaired glucose tolerance and
type 2 diabetes. [56]. The flavonoids present in natural products and crude herbal extracts
have previously been found to exert promising DPP-IV enzyme inhibitory action which acts
via binding to the DPP-IV and causing a conformational shift that inhibits the active site of
the enzyme [57, 58]. Therefore, it may be reasonable to assume that the presence of
flavonoids in EEAA may be responsible for the DPP-IV enzyme inhibition and enhancement

of GLP-1 action to aid in the maintenance of glucose homeostasis.

Phytochemical screening of EEAA identified the presence of different classes of
phytochemicals including tannins, terpenoids, glycosides, anthraquinones, and flavonoids
such as kaempferol and quercetin [13] which are consistent with the results of earlier studies
[14]. Flavonoids have previously been observed to improve glucose homeostasis and B-cell
function in STZ-induced rats [59, 60]. It has also been documented that the antidiabetic effect
of flavonoids aid in the regulation of glucose absorption, insulin signaling, insulin secretion,
and adipose deposition [61]. Additionally, they target a number of molecules that are
involved in the regulation of various pathways such as stimulating the PLC/PKC and/or
cAMP/PKA signaling pathways in order to improve B-cell proliferation, and promote insulin

secretion [62], prevent cellular apoptosis via inhibition PI3K/Akt pathway [63], and lower
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hyperglycaemia through regulating hepatic glucose metabolism [61]. Furthermore, flavonoids
have also been reported to prevent diabetes-associated microvascular complications such as
protecting from diabetic retinopathy by improving the retinal SIRT-1 pathway, alleviating
diabetic neuropathy via activation of Nrf-2/HO-1 and inhibition of nuclear factor K beta (NF-
«B) as well as inhibition of advanced glycation end-products generation [64]. Findings from
previous studies have also shown that tannins promote the utilization of carbohydrates by
receptor cells to enhance glucose uptake via phosphorylation of the protein components
involved in the signaling cascade of insulin-mediated glucose transport, including the insulin
receptor (IR), Akt, and translocation of the glucose transporter 4 (GLUT 4) [ 65]. Previous in
vitro and in vivo studies reported that monoterpenes, known as terpenoid, exert the
antidiabetic effect by lowering the blood glucose levels, reducing TC, TG, and plasma
glucose, as well as improving impaired renal function [66]. Additionally, it has also been
reported that anthraquinones improve glucose tolerance, enhance glucose uptake in cells, and
improve glycaemic levels via several pathways including stimulation of PPAR-y, inhibition
of a-glucosidase activity, and regulation of the AKT/GSK-3 signaling pathway [67]. Hence,
it may be concluded that the presence of these phytochemicals in EEAA is responsible for its
insulinotropic and glucose-lowering effects. However, further research is certainly warranted

to corroborate this hypothesis.

5. Conclusion

To summarize, the current study has demonstrated that the anti-hyperglycaemic effects of
EEAA bark are linked to decreased intestinal glucose absorption and increased tissue glucose
utilization, which is facilitated by an increase in insulin release from clonal pancreatic B-cells
and isolated mouse islets. In addition to that, the decrease in DPP-IV enzyme activity
increased the amount of active GLP-1 (7-36) level in the systemic circulation. These effects
might be attributed to the presence of various bioactive constituents such as flavonoids,
tannins, terpenoids, and anthraquinones. As a result, we might speculate that Acacia arabica
could be used as a dietary supplement as well as a possible source of oral antidiabetic agents
to treat hyperglycaemia. However, further in-depth studies are needed to investigate the role
of Acacia arabica and its marker compounds in the prevention and management of type 2

diabetes in individuals.
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Abbreviations
EEAA Ethanol Extract of Acacia arabica
KClI Potassium chloride

DPP-1V Dipeptidyl peptidase-IV

HFF High fat fed

GLP-1 Glucagon-like peptide-1

GIP Glucose-dependent insulinotropic polypeptide

GIT Gastrointestinal tract

Katp Adenosine triphosphate-sensitive potassium channel

FLIPR Fluorometric Imaging Plate Reader

KRB Krebs-Ringer Bicarbonate

2 NBDG 2-[N-(7-nitrobenz-2-oxa- 1,3-diazol-4-yl) amino]-2-deoxy-D-glucose
PBS Phosphate-buftered saline

HPLC High performance liquid chromatography

Gly-Pro-AMC  Gly-Pro-7-Amino-4-Methyl-Coumarin

GOD/PAP Glucose oxidase-phenol amino phenazone
CEDT Cellulose ester dialysis tube

IRS Insulin Receptor Substrate

PKB Protein kinase B

GLUT-4 Glucose transporter type 4

AMPK Adenosine monophosphate protein kinase
PLC/PKC Phospholipase C (PLC)/protein kinase C
cAMP cyclic Adenosine monophosphate

PKA Protein kinase A
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PI3K/Akt
SIRT-1
NrF-2/HO-1
NF-kB

TC

TG
PPAR-y

GSK-3p

Phosphoinositide 3-kinase/protein kinase B

Sirtuin 1

Nuclear factor erythroid-2 related factor 2/heme oxygenase
Nuclear factor kappa B

Total cholesterol

Triglycerides

Peroxisome proliferator-activated receptor-y

Glycogen Synthase

Kinase-3f
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Figure title with Legends

Figure 1: Effects of ethanol extract of Acacia arabica (EEAA) bark on insulin secretion
from (A, B) clonal pancreatic BRIN BD11 B cells, as well as (C) pancreatic islets of
Langerhans, (D) protein glycation, (E) insulin secretion with known stimulators or
inhibitors and (F) with or without extracellular calcium.

# ok

Values are mean = SEM; n = 4-8 for insulin secretion and glycation of protein. e p <
0.05-0.001 compared to control. ¢ p < 0.05 and A p < 0.001 compared to 5.6 mM glucose
with EEAA. & 2% %4 5<0.05-0.001 compared to respective incubation without EEAA.
EEAA, ethanol extract of Acacia arabica (bark).

Figure 2: Effects of ethanol extract of Acacia arabica (EEAA) bark on (A) membrane
potential and (B) intracellular calcium in clonal pancreatic BRIN-BD11 B-cells and, (C-
G) glucose uptake by differentiated 3T3L1 adipocytes, (H) starch digestion and (I)
glucose diffusion in vitro.

The intensity of fluorescence was measured for cells incubated with EEAA (E) minus or (F)
plus 100 nM insulin. The images were captured at 10x magnification. (G) Glucose uptake in
3T3L1 cells and percentage of glucose liberation from (H) starch digestion and (I) glucose
diffusion in vitro were represented in the scatter dot plot. The Values are mean + SEM; n =6
for membrane potential and intracellular calcium, n = 4 for glucose uptake, starch digestion

sk sk

and glucose diffusion. * " p < 0.05-0.001 compared to control.

Figure 3: Effects of ethanol extract of Acacia arabica (EEAA) bark on (A) in vitro
dipeptidyl peptidase-4 (DPP-1V) enzyme, (B) glucose tolerance, (C) plasma insulin, (D)
plasma DPP-1V and (E) active GLP-1 (7-36) in HFF rats.

Parameters were measured before and after oral administration of glucose alone (18 mmol/kg
body weight, control) or with EEAA (250 mg/5 ml/kg body weight), sitagliptin and
vidagliptin (both at 10 umol/5 ml/kg, body weight) in vivo. Plasma active GLP-1 (7-36)
levels were evaluated at 60 min following treatment. Values are mean + SEM; n = 4 for in

vitro DPP-IV enzyme activity and n = 6, for in vivo parameters. * *  p < 0.05-0.001
compared to control and 2% 444 p < 0.05-0.001 compared to high-fat-fed diet control rats.

€20z AeN Z1 uo Jasn Aysseniun Jesin Ag ypd-62€0-€202-1SA/6.19¥6/62£0£202HSE/Z0L 01 /10p/Apd-ajoile/dau10s0lq/wod ssaidpuelod//:dny woly papeojumoq



62£0£2024S9/201°01/610'10p//:dRY 18 B|qe|ieAe S| UOISIan-a1ep-0)-dn JSOW 8y | ‘UOISIBA Siy} @oe|dal (M ‘paysiignd Usym ‘Jey) piooay JO UOISISA 8} 8sn 0} pabeinoous aie noA jduosnuepy pejdeooy Ue si siy| ‘sHodey 8ousiosolg

Insulin release
(ng/10%cells/20 min

(A)

Insulin release
(ng/10%cells/20min)

Insulin release
(% of total insulin content)

(E)

(B)

[ ] 5.6mM Glucose ® 16.7mM Glucose
B 5.6mM Glucose + 10mM Alanine ®  16.7mM Glucose + 30mM KCl
A 5.6mM Glucose + EEAA (ug/ml) A 16.7mM Glucose + EEAA (ug/ml)
*kk
9+ | 12 i
" y
87 A 10 m
7 A |
A A -
L £ 8 u
6 o E
5 “xog HE = A N
- 3 *%
u A *% i % 6 A aha |T|
s TS oy o
u A | 2= A
3 L . A £ 49 D
A = AAA T
2 :E ‘%‘ ° as A : ﬁﬂ{ .
[ ) AT A A 24 o:& A
1 «o$ A M s ar A
o®0 A
0 T T T T T T T T 0 T T T T T T T T
None None 5000 1000 200 40 8 1.6 None None 5000 1000 200 40 8 1.6
Ethanol extract of A. arabica (ug/ml ) Ethanol extract of A. arabica (pg/ml)
° 16.7 mM Glucose
®  16.7 mM Glucose + 10mM Alanine (D)
¢ 16.7 mM Glucose + GLP-1 (10 and 10 m)
A 16.7 mM Glucose + EEAA (ug/ml)
36 ik . .
® 200mM Glucose + insulin (1 mg/ml)
. 120 ™ 200mM Glucose + insulin (1 mg/ml) + 44mM Aminoguaninin
327 X A 200mM Glucose + insulin (1 mg/ml) + EEAA (ng/ml)
28 R BN ¢ — 100 —===8 A %
. d ) ® —TT— —
= A A
¢ c Fkk
24
‘ § 8 801 e
. *e 4 5% A
© o
20 ¢ A Qo 3
*k 2R A _;r_
ok T . O 607 7y
c ()]
16 |T| A4 A |T| E g A
Em AA A (<] .
12 ‘ 1 q—: o g 0 Fkk
A
g A I3 F 1
. i & 20 =
g e@O u ]
'.;. A
[ )
4 T T T T T T T 0 T T T T T
None None  10° 108 40 20 10 None None 8 40 200

Ethanol extract of A. arabica (pg/ml)

®  Glucose alone
A Glucose + EEAA (40ug/ml)

15.0 AAA
12.5- *kk
: A
10.0+ a
A *
—— M
7.5 * °
Ma Oes [0}
5.0 ® & — O % e
aa SO Coo TN o—
i o ° gt -
251 Wt § o 3%
T4 °® oL o
0.0 o0
1.1mM 56mM 16.7mM 5.6mM+ 5.6mM+ 56mM+ 5.6mM + 16.7mM +
Verapalim Diazoxide IBMX Tolbutamide KCI
(50uM) (300uM) (200pM) (200pM) (30mM)

Additions

(F)

Insulin release
(ng/1 0%cells/20 min

Ethanol extract of A. arabica (ug/ml)

° 5.6mM Glucose
A 5.6mM Glucose + EEAA (40pg/ml)

Fekk
6 F 2 i (I)
A A AA
i
i A
4 ad AR
¢ A * —*1‘—
d : — AAA
- []) 4
2 ®9 °
e
° o0
. .
0
ca? Ca®free
Additions

£20Z AeN z| uo Jesn Aysieniun Jeisin Aq jpd 62£0-£202-150/6.L1.9¥6/62£0£2024SE/2¥01L 01/10P/3pd-8|8hue/deiiosolq/woo sseidpuepod;/:diy woly pepeojumoq



62£0£2024S9/2701°01/61010p//:SdNY 1B B|qE|IeA. S| UOISIOA-2}ep-0}-dn JSOW By "UOISIOA SIy} oe|dai [|Im ‘paysiiqnd Usym ‘Jey) pioday JO UOISISA 8U} 8sn 0} pabeinoous ale noA ‘jduosnuepy pejdecdy ue s| siy) “sHodey sousiosolg

®  5.6mM Glucose alone

40000 m  5.6mM Glucose + 30mM KCI
1504 % 5.6mM Glucose A 5.6mM Glucose + EEAA (40ug/ml)
—— 5.6mM Glucose + 30mM KCI o
—+—  5.6mM Glucose + EEAA (40ug/ml) = 30000 =
5 1009 &5 c
£ @3 20000 &E)
H 5% 3
&= 8 =5
sB 509 5 13
8= £ 10000 2
] g
5 . £
= 0 Sody
None None 200
Time (S) Ethanol extract of A. arabica (ug/ml)
50
Control 100nM Insulin

5.6mM Glucose
5.6 mM Glucose + 10mM Alanine
5.6mM Glucose + EEAA (40pg/ml)

Time (S)

(E)

EEAA (40 pg/ml)

°

® Control
L] 100nM Insulin
A EEAA (200pg/ml)
2x1077 Y 100nM Insulin + EEAA (200ug/ml)
O _ Fekk
g =
c
Zz S ... * *kk
g ghex10 oA
25 vy
23 R v
c 8 A
8 g 1%107 LYYV
=3 4 vyvy
b Aga A4
Ss Ta44% VvV ¥y
8 9 5x106 AAAAA
H ,
83 441 vy
63 A
=)
w
0
Treatments

(H)

(N

® Control
120 4 EEAA(pg/mli)

° A
c * c
s §o £ 4, A = s
b N =& |T| E
E 804 A A A A AT, |_|A %
= . °
2 = @
o o
g N
2 40
w
)
*

0 T T T T T T T
None 0.16 1.6 8 40 200 1000

Ethanol extract of A. arabica (ug/ml)

(expressed as % of control)

5.6mM Glucose alone
m  56mM Glucose +10mM Alanine
A 5.6mM Glucose + EEAA (40pg/ml)

60000 i
u
£
3 B il
g 40000 - =
59 = A
2g AAA
g 20000
H o)
None None 200

Ethanol extract of A. arabica (ug/ml)

(F)

100nM Insulin + EEAA (40 pg/ml)

® 220mM Glucose alone

1207 Ao 220mM Glucose + EEAA (mg/ml)
°
100 %— A4 * -
° :EA A e
R i
80 L= T
4 —ala
60| A
40
20
0 T T T T T
None 0.04 0.2 1 5

Ethanol extract of A. arabica (mg/ml)

od//:djy wouy papeojumoq

€202 KB g} uo Jasn Aysieaiun Jesin Aq Jpd 62€0-€202-1SA/6.19¥6/62£0£202HSE/CY0L 0L/10P/Pd-3)



62£0£2024S9/Z+01"01/610°10p//:SANY 18 B|qe|iene s| uoisieA-a)ep-0}-dn JSOW 8y “UOISIeA Sy} soe|dal [Im ‘paysiignd Usym ‘Jey} pI09sy JO UOISISA 8U} 8sn 0} pabeinoous ale NoA ‘iduosnuepy pejdeddy ue si sy ‘sHodey 8ousiosolg

=

Relative flurogenic AMC
liberation (% of DPP4 control)

Ex. 370 Em. 440

—e— Lean control (Saline) —e— Lean control (Saline)
(B) —+— High fat fed diet control (Saline) (C) e Fiah for foa dist control (Saline)
—&— High fat diet + EEAA (250mg/5mli/kg) . .
—4&— High fat diet + EEAA (250mg/5ml/kg)
94 *%
®  200uM Gly-Pro-AMC + DPP-IV (8mU/mL™) 5.0 A
125- A 200uM Gly-Pro-AMC + DPP-IV (8mU/mL™") + EEAA (ug/ml) *% i
I 81
b = = *k
100 | o®%® — Qo £
A dkk £ >
‘T‘ |_A| £ 74 c 3.5
75 = Py <z o
: — Fedek § 3 ]
50 e 2 Y @ 3
o = 4 - 3
25 1 £ 2 =
K] o o
m 5- S -
0 o 3
None 40 200 1000 5000 3
=3
Ethanol extract of Acacia arabica (ug/ml) 4- 0.5- _é—’
r T T T T T 1 r T T 1 '§
0 30 60 90 120 150 180 0 60 120 1802
Time (min) Time (min) %
©
g
—e— Lean control (Saline) 14
—e— High fat fed diet control (Saline) 8
(D) —a— High fat diet + EEAA (250mg/5ml/kg 2
. o
—m— High fat diet + Sitagliptin (10umol/5ml/kg) ® L‘_*a" control (_sa""e) ) S
—¥—  High fat diet + Vidagliptin (10umol/5ml/kg) ¢ High fat fed diet control (Saline) ¢
2.4+ Jekede A High fat diet + EEAA (250mg/5ml/kg) °
. . . o N
B High fat diet + Sitagliptin (10umol/5ml/kg) 2
21 - v High fat diet + Vidagliptin (10umol/5ml/kg) o
-1 ] °
Q
- AAA &
s ] Fkk AAA 2
£ 18 — 20+ e wok S
£E S — 3
28 e v 5
§35 15 g F o mgge 2
T £ 154 A4
% < 1 ° Aa - 2
a3 8 S
S 1.2 ) < . 8
£ 10 —== A 1]
E] < L0 L d v ]
= E ° S A ¢
0.94 K] o* 5
o 54 2
AAA g
AAA IS4
0.6- %
8]
T T T T T T 1 0 8
0 30 60 90 120 150 180 g
w
Time (min) 3
el
o
o
<
c
7]
g
c
EX
<
[}
@
&
c
w
Q
o
=]
o
<
D
<
N
o
N
w



	Article File
	Figure 1
	Figure 2
	Figure 3

