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Abstract: Acacia arabica is used traditionally to treat a variety of ailments, including diabetes. This
study elucidated the antidiabetic actions of A. arabica bark together with the isolation of bioactive
molecules. Insulin secretion and signal transduction were measured using clonal β cells and mouse
islets. Glucose uptake was assessed using 3T3-L1 adipocytes, and in vitro systems assessed addi-
tional glucose-lowering actions. High-fat-fed (HFF) obese rats were used for in vivo evaluation,
and phytoconstituents were isolated and characterised by RP-HPLC followed by LC-MS and NMR.
Hot-water extract of A. arabica (HWAA) increased insulin release from clonal β cells and mouse
islets by 1.3–6.8-fold and 1.6–3.2-fold, respectively. Diazoxide, verapamil and calcium-free conditions
decreased insulin-secretory activity by 30–42%. In contrast, isobutylmethylxanthine (IBMX), tolbu-
tamide and 30 mM KCl potentiated the insulin-secretory effects. The mechanism of actions of HWAA
involved membrane depolarisation and elevation of intracellular Ca2+ together with an increase
in glucose uptake by 3T3-L1 adipocytes, inhibition of starch digestion, glucose diffusion, dipep-
tidyl peptidase-IV (DPP-IV) enzyme activity and protein glycation. Acute HWAA administration
(250 mg/5 mL/kg) enhanced glucose tolerance and plasma insulin in HFF obese rats. Administration
of HWAA (250 mg/5 mL/kg) for 9 days improved glucose homeostasis and β-cell functions, thereby
improving glycaemic control, and circulating insulin. Isolated phytoconstituents, including quercetin
and kaempferol, increased insulin secretion in vitro and improved glucose tolerance. The results
indicate that HWAA has the potential to treat type 2 diabetes as a dietary supplement or as a source
of antidiabetic agents, including quercetin and kaempferol.
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1. Introduction

Diabetes mellitus (DM) is one of the fastest-growing metabolic disorders resulting
from deficiency of insulin, disturbed beta-cell function or insulin resistance [1]. Type
1 diabetes mellitus (T1DM) typically develops under the age of 30, when beta cells are
destroyed. Type 2 diabetes mellitus (T2DM) is commonly found over the age of 40, but it is
increasingly common in children and young adults due to childhood obesity, which causes
beta-cell dysfunction and insulin resistance. Both major forms of diabetes are characterised
by hyperglycaemia, which is a major player in the risk of developing diabetic complications
such as cardiovascular disease, neuropathy, retinopathy and nephropathy [2]. Diet, weight
loss and the use of single or multiple oral antidiabetic drugs are prevalent treatment options
for T2DM. Such agents, including DPP-IV inhibitors and glucagon-like peptide-1 mimetics,
are being used to improve glucose tolerance via the potentiation of glucose-stimulated
insulin secretion [2,3]. GIP and GLP-1, two incretin hormones secreted from intestinal K
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and L cells after a meal, are very effective regulators of postprandial hyperglycaemia [4].
The DPP-IV enzyme dictates the half-life of incretin hormones by cleaving the first two
N-terminal amino acids to generate inactive forms, namely GIP (3–42) and GLP-1 (9–36) [5].
DPP-IV inhibitors are therefore useful for treating type 2 diabetes by reducing DPP-IV
enzyme activity and increasing circulating concentrations of the active forms of both
hormones. The advent of medical advances in treatment options has resulted in better
glycaemic control. However, these options are often expensive and have secondary side
effects that sometimes limit their use in wider and particularly poorer sections of society.

Herbal medicines are popular for a wide variety of ailments, and according to WHO,
75% of the global population uses herbs for basic healthcare needs [6]. Several medicinal
plants and their formulations have gained attention in diabetes treatment [7]. An eth-
nobotanical and pharmacological survey provided useful information on plant species
reported to possess antidiabetic activity that could be used as an adjunct treatment for
T2DM therapy [8,9]. Folk medicines are popular and apparently effective for diabetes
treatment in many regions of the world because of their availability, low cost and apparent
safety and effectiveness [10]. However, few have been subjected to scientific scrutiny, and
the mechanisms of action and nature of the active constituents are unknown. Several plants,
including Trigonella foenum greacum, have been reported many times for their ability to
treat T2DM [11,12]. Moreover, nearly 200 isolated compounds from different plant sources
have been reported to lower blood glucose [9]. Some of these are alkaloids, carbohydrates,
glycosides, flavonoids, steroids, terpenoids, peptides and amino acids, lipids, phenolic,
glycopeptides and iridoids.

The gum of Acacia arabica is traditionally known as “Samghe arabi” in Persian
medicine. The fruits have a long background of traditional use as an astringent, a di-
uretic, an antimicrobial and in wound healing therapy, as well as a liver tonic [13]. The gum
is actively used as a dietary supplement for diabetes treatment in Ayurvedic medicine [14].
A previous study reported that fruits of A. arabica had no significant hypoglycaemic action
in diabetic rabbits but lowered blood glucose in normal animals [15]. Several parts of A.
arabica have been studied for hypoglycaemic effects [16–18]. A recent study also reported
the potential effect of A. arabica on insulin resistance, blood glucose and lipid profile in
streptozotocin (STZ)-induced diabetic rats [19]. None of these studies has provided a
convincing and full account of the antidiabetic activity of A. arabica. Therefore, the present
study was designed to fully investigate the pancreatic and extrapancreatic antidiabetic
properties of A. arabica in vitro and in vivo to understand the mechanisms of action and
nature of its bioactive compounds.

2. Results
2.1. Effects of Extract of A. arabica Bark on Insulin Release from BRIN-BD11 Cells

The basal rate of insulin release from BRIN-BD11 cells in the presence of 5.6 mM
glucose was 0.87 ± 0.03 ng/106 cells/20 min, and this rate increased to 4.45 ± 0.53 ng/106

cells/20 min (p < 0.05; n = 8) in the presence of alanine (10 mM) (Figure 1A). At 16.7 mM
glucose, basal insulin release was 1.50 ± 0.07 ng/106 cells/20 min, which was increased to
8.40± 0.44 ng/106 cells/20 min in the presence of 30 mM KCl (Figure 1B). Hot-water extract
of A. arabica bark stimulated insulin release in a dose-dependent manner (1.6–5000 µg/mL)
at 5.6 mM or 16.7 mM glucose (p < 0.05–0.001; Figure 1A,B). Extract at 5000 µg/mL
produced maximum responses of 5.1- to 6.8-fold times the basal rate. However, the higher
concentrations (200, 1000 and 5000 ug/mL) increased lactate dehydrogenase (LDH) release
by 1.30–6.18-fold (Figure S1A,B). At extract concentrations of 1.6–40 µg/mL, no lactate
dehydrogenase (LDH; cytosolic enzyme) release was observed, indicating the lack of
deleterious effects on plasma membrane (Figure S1A,B).
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Figure 1. Dose-dependent effects of hot-water extract of A. arabica bark on insulin release from (A,B) BRIN-BD11 cells and 
(C) islets of Langerhans, (D) protein glycation, (E) insulin secretion in the presence of established stimulators or inhibitors 
and (F) absence of extracellular calcium. Values are the mean ± SEM for n = 4–8 for insulin release and n = 3 for protein 
glycation. * p < 0.05, ** p < 0.01 and *** p < 0.001 compared to control (5.6/16.7 mM glucose and 220 mM glucose + insulin 
(1 mg/mL)). ϕ p < 0.05, ϕϕ p < 0.01 and ϕϕϕ p < 0.001 compared to 5.6 mM glucose in the presence of the extract. Δ p < 0.05, ΔΔ 

p < 0.01 and ΔΔΔ p < 0.001 compared to respective incubation in the absence of the extract. 

2.2. Effects of Extract of A. Arabica Bark on Insulin Release from Isolated Mouse Islets 
Hot-water extract produced a substantial increase in insulin secretion from isolated 

mouse islets at 16.7 mM glucose (Figure 1C). A significant stimulation was produced at 
extract concentrations of ≥20 μg/mL (Figure 1C). The increase in insulin secretion induced 
by hot-water extract was moderately less than the positive control GLP-1 (10−6 and 10−8 M) 
in the presence of 16.7 mM glucose (Figure 1C). 

Figure 1. Dose-dependent effects of hot-water extract of A. arabica bark on insulin release from (A,B) BRIN-BD11 cells and
(C) islets of Langerhans, (D) protein glycation, (E) insulin secretion in the presence of established stimulators or inhibitors
and (F) absence of extracellular calcium. Values are the mean ± SEM for n = 4–8 for insulin release and n = 3 for protein
glycation. * p < 0.05, ** p < 0.01 and *** p < 0.001 compared to control (5.6/16.7 mM glucose and 220 mM glucose + insulin
(1 mg/mL)). φ p < 0.05, φφ p < 0.01 and φφφ p < 0.001 compared to 5.6 mM glucose in the presence of the extract. ∆ p < 0.05,
∆∆ p < 0.01 and ∆∆∆ p < 0.001 compared to respective incubation in the absence of the extract.

2.2. Effects of Extract of A. arabica Bark on Insulin Release from Isolated Mouse Islets

Hot-water extract produced a substantial increase in insulin secretion from isolated
mouse islets at 16.7 mM glucose (Figure 1C). A significant stimulation was produced at
extract concentrations of ≥20 µg/mL (Figure 1C). The increase in insulin secretion induced
by hot-water extract was moderately less than the positive control GLP-1 (10−6 and 10−8 M)
in the presence of 16.7 mM glucose (Figure 1C).
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2.3. Effects of Extract of A. arabica Bark on Glycation of Insulin

Hot-water extract evoked a 15–30% inhibition (p < 0.05–0.001; Figure 1D) of insulin
glycation at 40–200 µg/mL. Aminoguanidine (44 mM) used as positive control inhibited
glycation by 83% (p < 0.001; Figure 1D).

2.4. Insulinotropic Effects of Extract of A. arabica Bark in the Presence of Known Modulators of
Insulin Release

A. arabica (40 µg/mL) extract was incubated with known modulators of insulin
release to evaluate mechanisms responsible for the insulinotropic activity of the plant
(Figure 1E). Insulin-releasing effects were partly reduced by the K+ channel activator,
diazoxide (300 µM). Similar inhibition was observed in the presence of the L-type voltage-
dependent Ca2+ channels blocker, verapamil (50 µM) (Figure 1E). The insulin-releasing
action was preserved in incubations with tolbutamide and a 30 mM depolarising concentra-
tion of KCl (Figure 1E). The phosphodiesterase inhibitor, isobutylmethylxanthine (IBMX),
also enhanced insulin-releasing activity (p < 0.001; Figure 1E). Dependency of the plant’s
insulinotropic effect on [Ca2+]i was confirmed by incubations in the absence of Ca2+, which
diminished insulin release by 32% (Figure 1F).

2.5. Effects of Extract of A. arabica Bark on Membrane Depolarisation and Intracellular Calcium
Concentration in BRIN-BD11 Cells

KCl (30 mM) and alanine (10 mM) were used as positive controls that elicited signifi-
cant depolarisation of membrane potential and elevation of [Ca2+]i concentration, respec-
tively (p < 0.001; Figure 2A,B). Hot-water extract also evoked membrane depolarisation
and an increase in [Ca2+]i concentration (p < 0.001; Figure 2A,B).
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Figure 2. Effects of hot-water extract of A. arabica bark on (A) membrane potential and (B) intracellular calcium in BRIN 
BD11 cells, (C–G) glucose uptake in differentiated 3T3L1 adipocyte cells, (H) acarbose, (I) starch digestion, (J) guar gum 
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Figure 2. Effects of hot-water extract of A. arabica bark on (A) membrane potential and (B) intracellular calcium in BRIN
BD11 cells, (C–G) glucose uptake in differentiated 3T3L1 adipocyte cells, (H) acarbose, (I) starch digestion, (J) guar gum
and (K) glucose diffusion in vitro. Changes in fluorescence intensity in differentiated 3T3L1 adipocytes incubated with
extract in the (E) absence or (F) presence of 100 nM insulin. Images were taken at 10×magnification. Values are the mean ±
SEM for n = 6 for membrane potential and intracellular calcium and n = 4 (~20 values of fluorescence intensity per group for
glucose uptake) for glucose uptake, starch digestion and glucose diffusion. * p < 0.05, ** p < 0.01 and *** p < 0.001 compared
to control.
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2.6. Effects of Extract of A. arabica Bark on Glucose Uptake and Insulin Action

Glucose uptake and insulin action were studied using 3T3L1 differentiated adipocyte
cells and a fluorescent glucose analogue (Figure 2C–G). In the microscopic fluorescence
analysis, A. arabica extract enhanced glucose uptake significantly compared to control
(p < 0.05–0.001; Figure 2G). The effect was not potentiated by 100 nM insulin. Insulin alone
stimulated glucose uptake by 1.5-fold (p < 0.01; Figure 1G) compared to control.

2.7. Effects of Extract of A. arabica Bark on Starch Digestion

Acarbose (1 mg/mL) used as positive control inhibited enzymatic glucose liberation
from starch by 87% (Figure 2H). The hot-water extract significantly inhibited starch diges-
tion at concentrations of 40–1000 µg/mL, with a maximum of 32% inhibition (p < 0.01) at
1000 µg/mL (Figure 2I).

2.8. Effects of Extract of A. arabica Bark on Glucose Diffusion In Vitro

Hot-water extract of A. arabica (mg/mL) had significant inhibitory effects on glucose
diffusion after 24 h of incubation (Figure 2K). The maximal inhibition of 30% was observed
at 25 mg/mL (p < 0.05–0.01; Figure 2K). Guar gum (25 mg/mL) used as positive control
inhibited glucose movement by a maximum of 55% (Figure 2J).

2.9. Effects of Extract of A. arabica Bark on DPP-IV Enzyme Activity In Vitro

Sitagliptin, an established drug (10 µM), inhibited the enzymatic AMC liberation from
the DPP-IV substrate, Gly-Pro-AMC, by 98% (Figure 3A). Hot-water extract significantly
inhibited the DPP-IV enzyme by 18–93% (p < 0.01–0.001, Figure 3B) at 40–5000 µg/mL.
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Figure 3. Acute effects of (A) sitagliptin and (B) hot-water extract of A. arabica bark on DPP-IV enzyme activity in vitro,
(C) glucose tolerance, (D) plasma insulin and (E) plasma DPP-IV in high-fat-fed rats. Parameters were measured prior to
and after oral administration of glucose alone (18 mmol/kg body weight, control) or with simultaneous A. arabica extract
(250 mg/5 mL/kg body weight). Established DPP-IV inhibitors, sitagliptin and vildagliptin, were used as positive controls.
Values are the mean ± SEM, n = 3 for DPP-IV enzyme activity in vitro and n = 6 for glucose tolerance, plasma insulin
and DPP-IV in vivo. * p < 0.05, ** p < 0.01 and *** p < 0.001, compared to normal control and ∆ p < 0.05, ∆∆ p < 0.01 and
∆∆∆ p < 0.001 compared to high-fat-fed control.
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2.10. Acute Effects of Hot-Water Extract of A. arabica Bark on Oral Glucose Tolerance and Plasma
DPP-IV in High-Fat-Fed Rats

A single dose of A. arabica hot-water extract (250 mg/5 mL/kg; body weight) elicited
a significant (p < 0.05–0.001) decrease in blood glucose at 30, 60, 120 and 180 min compared
to control rats (Figure 3C). The extract also significantly increased plasma insulin at 30 and
60 min (p < 0.05; Figure 3D). AUC analysis revealed a 13% decrease (p < 0.001; Figure 3C)
in blood glucose excursion and a 10% increase (p < 0.05; Figure 3D) in plasma insulin.
The extract also inhibited plasma DPP-IV enzyme activity (p < 0.05) in a time-dependent
manner (Figure 3E). AUC calculations also revealed an 11% decrease in DPP-IV enzyme
activity (p < 0.05; Figure 3E). Sitagliptin and vildagliptin (10 µmol/5 mL/kg), used as
gold-standard drugs, produced 70–75% reductions in plasma DPP-IV enzyme activity
(p < 0.001; Figure 3E).

2.11. Effects of Twice-Daily Oral Administration of Hot-Water Extract of A. arabica Bark on Body
Weight and Metabolism in High-Fat-Fed Rats

The treatment for 9 days with A. arabica extract (250 mg/5 mL/kg; b.w.) resulted in
significant improvements in all parameters measured (Figures 4A–C,E,F and 5D,E). Body
weight and cumulative food intake were decreased by 9–12% (p < 0.05–0.01; Figure 4A,D). The
extract also reduced fluid intake and blood glucose by 9–14% (p < 0.05–0.001; Figures 4C,E
and 5D), with a clear-cut effect from 6 days onwards. The extract also increased plasma
insulin by 14% (p < 0.01; Figures 4F and 5E) and inhibited DPP-IV enzyme activity from Day
6 onwards (p < 0.01, Figures 4G and 5F).
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Figure 4. Effects of 9-day, twice-daily oral administration of hot-water extract of A. arabica bark on (A) food intake, (B)
energy intake, (C) fluid intake, (D) body weight, (E) blood glucose, (F) plasma insulin and (G) DPP-IV enzyme activity in
high-fat-fed rats. Parameters were measured prior to and after oral administration of A. arabica bark (250 mg/5 mL/kg,
body weight) twice daily. Values are the mean ± SEM for n = 8 rats. * p < 0.05, ** p < 0.01 and *** p < 0.001 compared to lean
control. ∆ p < 0.05, ∆∆ p < 0.01 and ∆∆∆ p < 0.001 compared to high-fat-fed control at corresponding time points.
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Figure 5. Chronic effects of twice-daily oral administration of hot-water extract of A. arabica bark on (A) glucose tolerance,
(B) plasma insulin and (C) plasma DPP-IV on Day 6 and (D) blood glucose, (E) plasma insulin, (F) plasma DPP-IV,
(G) pancreas weight and (H) pancreatic insulin content on Day 9 in high-fat-fed rats. Parameters were measured after
treatment for 6 or 9 days with twice-daily oral administration of hot-water extract of A. arabica bark (250 mg/5 mL/kg
body weight). Values are the mean ± SEM with n = 8 (~32 per group for pancreatic insulin content). * p < 0.05, ** p < 0.01
and *** p < 0.001 compared to lean control. ∆ p < 0.05, ∆∆ p < 0.01 and ∆∆∆ p < 0.001 compared to high-fat-fed control at
corresponding time points.

2.12. Effects of Twice-Daily Oral Administration of Hot-Water Extract of A. arabica Bark on
Glucose Tolerance in High-Fat-Fed Rats

After 6 days of treatment with A. arabica extract (250 mg/5 mL/kg; b.w.), oral glucose
tolerance was significantly (p < 0.05–0.01) improved from 30 min onward (Figure 5A).
The effect was also associated with an increase in plasma insulin after 30 min (p < 0.05;
Figure 5B). AUC analysis showed a 16% reduction in blood glucose (p < 0.01; Figure 5A)
and a 15% increase in insulin responses (p < 0.01; Figure 5B) compared to the high-fat-fed
control rats. The extract also inhibited plasma DPP-IV from 60 min onwards (Figure 5C).
AUC data showed a 11% decrease (p < 0.01) in enzyme activity compared to high-fat-fed
control rats (Figure 5C).

2.13. Effects of Twice-Daily Oral Administration of Hot-Water Extract of A. arabica Bark on
Pancreatic Insulin Content in High-Fat-Fed Rats

No significant changes were observed in the pancreas weight of treated or untreated
high-fat-fed compared with lean control rats (Figure 5G). Pancreatic insulin content in high-
fat-fed rats was increased by 54% (p < 0.001) (Figure 5H). A. arabica decreased pancreatic
insulin compared to high-fat-fed controls (p < 0.001), but it was still increased by 35%
(p < 0.001) compared to lean rats (Figure 5H).
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2.14. Effects of Twice-Daily Oral Administration of Hot-Water Extract of A. arabica Bark on Islet
Morphology in High-Fat-Fed Rats

Representative images of islets of normal, high-fat-fed control and treated high-fat-fed
rats are shown in Figure 6A–C). High-fat feeding did not change the number of islets
per mm2 in the pancreas (Figure 6J), but a significant increase in islet area was observed
compared to the normal rats (p < 0.001; Figure 6D). High-fat-fed rats also exhibited a
significant (p < 0.001) increase in alpha-cell and beta-cell areas (Figure 6E,F). Treatment
with A. arabica extract significantly reduced overall islet area and beta-cell area (p < 0.05;
Figure 6D,F). As shown in Figure 6G, high-fat-fed rats possessed a greater number of large-
and medium-sized islets cells compared to normal control rats. High-fat-fed groups had a
higher percentage of β cells and a lower proportion of α cells compared with normal rats
(p < 0.05–0.01; Figure 6H,I).
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Figure 6. Effects of 9-day twice-daily oral administration of hot-water extract of A. arabica bark on islet morphology in
high-fat-fed rats. Representative images of (A) lean control, (B) high-fat-fed control and (C) high-fat-fed plus hot-water
extract of A. arabica (250 mg/5 mL/kg) in rats showing insulin in red, glucagon in green and DAPI in blue, (D) islet area,
(E) alpha-cell area, (F) beta-cell area, (G) islet size distribution, (H) alpha-cell percentage, (I) beta-cell percentage and
(J) number of islets (per mm2), respectively. Values are the mean ± SEM for n = 8 (~50 islets per group). * p < 0.05, ** p < 0.01
and *** p < 0.001 compared to lean control. ∆ p < 0.05 compared to high fat fed alone (control).

2.15. Acute Effects of Peak Samples of A. arabica Bark on Insulin Release from BRIN-BD11 Cells

The five major and clearly defined peak fractions of A. arabica bark extract from RP-
HPLC (Figure 7A) were assayed for insulin-secretory activity using BRIN-BD11 cells as
described above. As shown in Figure 7B, all five peak fractions (P-1, P-2, P-3, P-4 and
P-5) significantly stimulated insulin release (p < 0.001), as did the 10 mM alanine-positive
control. Only P-3 was associated with cytotoxicity, as evidenced by the 2.1-fold increase in
cellular LDH release (Figure S1C).
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Figure 7. Representative (A) HPLC profile and (B) insulin-releasing effects in BRIN BD11 cells of peak samples (1–5) of
hot-water extract of A. arabica bark. The crude extract was chromatographed at a flow rate of 1.0 mL/min on a (10 × 250 mm)
semipreparative 5 µm C-18 column (Phenomenex, UK). The concentration of the eluting solvent was raised using linear
gradients of acetonitrile (0–20% from 0 to 10 min, 20–70% from 10 to 40 min and 70–20% from 40 to 60 min). Compounds
were detected by measurement of absorbance at 254 nm, and major peaks labelled P1-P5 were assessed for insulin-releasing
activity. Values are the mean ± SEM for n = 8. *** p < 0.001 compared to control.

2.16. Purification and Structural Characterisation of Purified Extract of A. arabica Bark

Compounds were isolated using RP-HPLC and partially characterised by LC-MS
(Figure 7A and Table 1). The RP-HPLC and LC-MS analyses predicted that Peaks 1, 2 and 3
were quercetin, catechin and kaempferol, respectively. In the case of quercetin, compound
identity was further probed by NMR. Isolated compound quercetin was analysed through
1H and 13C NMR for characterisation: C15H10O7 was obtained as a yellow powder, λmax
= 360, 256 nm; EI-MS m/z 301.2 Da [M]; 600 MHz, CD3OD, 1H-NMR (δ in ppm); 6.19 (d,
1H, J = 2 Hz, H-6), 6.40 (d, 1H, J = 2 Hz, H-8), 6.88 (d, 1H, J = 8.4 Hz, H-5′), 7.64 (d, 1H, J
= 7.4 Hz, H-6′) and 7.80 (d, 1H, J = 2 H, H-2′). 13C NMR (600 MHz, CD3OD, δ in ppm);
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147.4 (C-2), 135.8 (C-3), 175.9 (C-4), 161.1 (C-5), 97.8 (C-6), 164.1 (C-7), 93.0 (C-8), 156.8 (C-9),
103.1 (C-10), 122.3 (C-1′), 115.6 (C-2′), 145.6 (C-3′), 147.7 (C-4′), 116.1 (C-5′) and 119.2 (C-6′).

Table 1. Molecular mass and predicted identity of peak samples of A. arabica bark obtained from the preparative RP-HPLC
via LC-MS analysis.

Peak Samples Retention Time
(min)

Theoretical
Molecular
Wt. (Da)

Found
Molecular

Weight (Da)

Predicted
Compounds

P1 9.7 302.2 301.2 Quercetin

P2 19 290.3 289.0 Catechin

P3 23 286.2 285.2 Kaempferol

P4 29 - 677.2 Unknown

P5 32.5 - 496.9 Unknown

Peaks were separated on a Spectra System LC using a Kinetex 5 µm F5 LC column (150 × 4.6 mm2) (Phenomenex). The mass-to-charge
ratio (m/z) versus peak intensity was determined.

The 1H-NMR spectrum of the isolated compound showed aromatic hydrogen groups
from 6.19 to 7.80 ppm. The 13C-NMR spectrum showed a carbonyl group at 175.9 ppm
and an aromatic carbon group from 93.0 to 164.1 ppm. The structure was verified via
comparison with evidence from the literature [20,21]. Molecular structures of tentatively
identified compounds are outlined in Figure 8A–C.
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Figure 8. Isolated compounds (A) quercetin, (B) catechin and (C) kaempferol of Peak-1, -2 and -3 samples obtained from
RP-HPLC of hot-water extract of A. arabica bark via LC-MS analysis. Proton-decoupled natural abundance 1H-NMR and
C13-NMR of the Peak-1 sample of A. arabica bark (obtained from a chromatograph over the period of 70% acetonitrile
from 10 to 40 min with a retention time of 9.7 min) at 40 ◦C. The spectrum values were obtained at 600 MHz after 119,044
transients (14 h) by the pulsed Fourier-transform method on a Varian XL-100 A spectrometer. The representative structures
of flavonoids, corresponding to the molecular formula of quercetin, catechin and kaempferol, are C15H10O7, C15H14O6 and
C15H10O6.

2.17. Acute Effects of Isolated Compounds Quercetin and Kaempferol on Insulin Release from
BRIN-BD11 Cells

Quercetin and kaempferol isolated from A. arabica bark were tested to confirm insulin-
secretory activity using BRIN-BD11 cells (Figure 9A,B). Alanine (10 mM) was again used
as positive control. Quercetin stimulated insulin secretion at 1.56–50 µM (p < 0.05–0.001,
Figure 9A), but at 50 µM increased LDH release by 2.1-fold (Figure S1D). Kaempferol
also increased insulin release in a dose-dependent manner (6.25–100 µM; p < 0.01–0.001,
Figure 9B) from BRIN-BD11 cells. At concentrations ≥100 µM, this was associated with
cytotoxicity and increased LDH release by 1.25-fold (Figure S1E).
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Figure 9. Insulin-releasing effects of (A) Quercetin and (B) Kaempferol, (C) membrane potential and (D) intracellular
calcium from BRIN-BD11 cells, (E,G) glucose tolerance and (F,H) plasma insulin. Mice were fasted for 12 h and administered
glucose (18 mmol/kg body weight) by oral gavage with or without (E,F) simultaneous quercetin (100 mg/kg b.w.) and
(G,H) kaempferol (70 mg/kg b.w.). Values are the mean ± SEM for n = 8 for insulin release, n = 6 for membrane potential,
intracellular calcium, glucose tolerance and plasma insulin. * p < 0.05, ** p < 0.01 and *** p < 0.001 compared to control.

2.18. Effects of Isolated Compound Quercetin on Membrane Depolarisation and ([Ca2+]i in
BRIN-BD11 Cells

Quercetin (40 µM) depolarised BRIN-BD11 cells in the presence of 5.6 mM glucose
(Figure 9C). Similarly, quercetin at 40 µM substantially (p < 0.001) increased [Ca2+]i compared
to control (Figure 9D). KCl (30 mM) and alanine (10 mM) were used as positive controls.
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2.19. Acute Effects of Synthetic Compound Quercetin and Kaempferol on Oral Glucose Tolerance
in Mice

Oral glucose tolerance was significantly improved (p < 0.05–0.01) at 30, 60 and 120 min
when quercetin (100 mg/kg) or kaempferol (70 mg/kg) were co-administered with glucose
(18 mmol/kg body weight) to mice (Figure 9E,G). Plasma insulin concentrations were also
increased at 30 and 60 min (p < 0.05–0.01; Figure 9F,H). AUC analysis showed an 11–22%
(p < 0.01) decrease in blood glucose and a 22–24% (p < 0.01) increase in plasma insulin
responses, respectively (Figure 9E–H).

3. Discussion

A. arabica, commonly known as babul, has been reported to possess antidiabetic
properties by traditional healers and recent scientific reports [22]. However, the validity of
these claims and the molecular mechanisms underpinning its antidiabetic activity have
not been elucidated [23,24]. To address this, we utilised a platform of in vitro tests and
high-fat-fed rats to test potential antihyperglycaemic actions of hot-water extract of A.
arabica bark.

We first evaluated the insulinotropic activity of A. arabica using clonal rat BRIN-BD11
cells and isolated mouse islets. This revealed stimulatory concentration-dependent insulin-
secretory effects at nontoxic concentrations. Further assessment was made using fluorescent
indicator dyes and known modulators of β-cell function, including diazoxide, verapamil,
Ca2+ depletion, tolbutamide, KCl and IBMX. These studies revealed that the action of A.
arabica involved the closure of K-ATP channels, membrane depolarisation, the opening of
voltage-dependent calcium channels, the influx of Ca2+ and the elevation of intracellular
Ca2+. Stimulatory effects nevertheless persisted in β cells depolarised by tolbutamide
or 30 mM KCl, suggesting additional actions such as the activation of adenylate cyclase,
which is supported by positive potentiation by the phosphodiesterase inhibitor, IBMX [25].

Insulin works primarily on skeletal muscle and adipose tissue for postprandial glucose
regulation [26]. GLUT4 translocation is reduced, and an inadequate or defective signal leads
to the development of insulin resistance [27]. Agents that can resolve insulin resistance are
therefore of great utility for the treatment of T2DM [28]. In this study, A. arabica increased
the glucose uptake by 3T3L1 adipocytes. The mechanisms responsible for such action need
further clarification but might involve the activation of Akt and p70 kinase, as this has
been shown to increase glycogen, lipid, and protein synthesis and in turn promote glucose
uptake [29].

Several factors are involved in the pathophysiology of diabetes and its complications,
such as the hyperglycaemic-induced glycation of structural and functional proteins [30].
Previous in vivo studies have reported that insulin can be glycated and reduces its bio-
logical activity by approximately 10%, thereby contributing to insulin resistance [31,32].
Inhibition of the glycation of insulin and other proteins is therefore a desirable feature
of any antidiabetic remedy. In this study, A. arabica decreased insulin glycation in vitro
in a concentration-dependent manner. This might reflect the antioxidant properties and
phytoconstituents of the plant such as vitamin C, flavonoids, glycosides, quercetin and
gallic acids [33,34].

A. arabica was tested for its effects on the in vitro enzymatic digestion of starch by α-
amylase and α-glucosidase, leading to the liberation of glucose. Acarbose, an established α-
glucosidase inhibitor used as a reference standard, inhibited glucose liberation significantly
in a concentration-dependent manner. A. arabica also caused significant concentration-
dependent inhibition of glucose liberation from starch. Previous studies have reported that
flavonoids are very effective in reducing the α-amylase activity and slowing down starch
digestion [35]. It has also been reported that A. arabica contains a high fibre content [36],
which may slow gastric emptying.

A decrease in the absorption and diffusion of glucose from the gastrointestinal tract is
one of the many reasons for plants to exhibit antihyperglycaemic activity [37]. We used
a dialysis-based method to study the effects of plant extract on the diffusion of glucose
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through an artificial barrier. Although this method has certain limitations, such as being
unphysiological and needing lengthy dialysis time (22–24 h), this technique is a simple
and effective means to study the effects of viscosity on glucose diffusion. The glucose
absorption blocker, guar gum, was used as positive control. In this system, A. arabica extract
elicited significant concentration-dependent inhibition of glucose movement through the
dialysis membrane.

High-fat diet-induced obese diabetic rodents are frequently used as models for investi-
gating both the acute and chronic effects of plant extract and pharmaceutical products [38].
Oral administration of A. arabica, together with glucose to high-fat-fed rats, improved
glucose tolerance, decreased circulating DPP-IV and augmented the accompanying plasma
insulin response. In the follow-up chronic 9-day study, A. arabica elicited significant im-
provements in food intake, body weight, non-fasting glucose, glucose tolerance, plasma
insulin and circulating DPP-IV. These observations support earlier studies showing that A.
arabica decreased hyperglycaemia, TC, TG, LDL-C and MDA and increased HDL-C and
Co-Q10 in STZ-induced diabetic rats [19].

The observation that benefits of A. arabica may extend to STZ rats typified by beta-cell
destruction suggests a possible positive effect on islet morphology and beta-cell mass.
Because we showed that the plant inhibits DPP-IV both in vitro and in vivo, the incretin
hormones GLP-1 and GIP may play a role in mediating such effects, as both peptides are
known to exert positive effects on β-cell proliferation, apoptosis, and islet cell transdifferen-
tiation [39–41]. Thus, by inhibiting DPP-IV, A. arabica will block the degradation of GIP and
GLP-1 to their inactive metabolites GLP-1 (9–36) and GIP (3–42) [42,43], thereby promoting
concentrations of their active forms. Several studies claim that phytochemicals in many
plant species have the potential to inhibit DPP-IV by directly blocking the DPP-IV enzyme
ligand-binding site [44,45]. Based on our phytochemical analysis of A. arabica extract, it
seems likely that flavonoids are the active compounds responsible for DPP-IV enzyme
inhibitory action. However, further studies are clearly needed to confirm this hypothesis.

Interestingly, histological analysis of the pancreas of high-fat-fed rats in the present
study revealed that A. arabica countered the diet-induced increases in islet, beta-cell and
alpha-cell areas associated with insulin resistance. The pancreatic insulin content was also
increased in the high-fat-fed group, being associated with a greater number of large- and
medium-sized islets with no overall change in the total number of islets per mm2. It seems
likely that these effects of A. arabica are not directly mediated by plant phytochemicals
but are a consequence of the amelioration of hyperglycaemia and improvement of insulin
resistance. However, further studies would be useful to confirm this.

Due to increasing interest in the availability of biologically or pharmacologically active
compounds, the search for phytochemicals responsible for the bioactivity of crude plant
extract has gained significant prominence. In this study, A. arabica crude extract was further
analysed to isolate, identify, and characterise molecular compounds with insulinotropic
and antidiabetic activity. Five major peaks (P-1 to P-5) were isolated by RP-HPLC and
shown to stimulate insulin release from clonal β cells. Further analysis showed identity
similar to the known phytochemicals quercetin (P-1), catechin (P-2) and kaempferol (P-
3) [46]. The isolated fraction P-1 (quercetin) was a yellow amorphous powder that was
further characterised by NMR. This revealed that the 1H-NMR spectrum of the isolated
compound had aromatic hydrogen groups from 6.19–7.80 ppm. The 1H-NMR spectrum
showed two peaks at 6.19 (d, 1H, J = 2 Hz) and 6.40 ppm (d, 1H, J = 2 Hz), consistent with
the meta protons on the A ring and at 6.88 (d, 1H, J = 8.4 Hz), 7.64 (d, 1H, J = 7.4 Hz) and
7.80 (d, 1H, J = 2 Hz) corresponding to the catechol protons on the B ring. The 13C-NMR
spectrum showed a carbonyl group at 175.9 ppm and an aromatic carbon group from
93.0 to 164.1 ppm. These data are consistent with those reported in the literature for the
compound quercetin [20,21]. Quercetin and kaempferol significantly increased insulin
release in a concentration-dependent manner and improved both glucose tolerance and
plasma insulin responses in mice. Quercetin (P-1), catechin (P-2) and kaempferol (P-3)
have been suggested to have significant antidiabetic potential [47], and the presence of
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these phytochemicals might be responsible for the substantial antidiabetic activity of A.
arabica bark.

4. Materials and Methods
4.1. Collection and Preparation of Plant Extracts

The bark of A. arabica was collected from Jahangirnagar University, Dhaka, Bangladesh,
and Botanical Accession Number 43,756 was assigned by the National Herbarium. Barks
were processed for hot-water extraction, as described previously [48]. The final extracted
semisolid, sticky residue of A. arabica bark was freeze-dried using a freeze dryer (Varian 801
LY-3-TT, Varian, Lexington, MA, USA) and stored at 4 ◦C until use. Flavonoids, including
quercetin, catechin and kaempferol, were obtained from Sigma-Aldrich (Poole, UK).

4.2. In Vitro Insulin-Releasing Studies

Insulin-releasing BRIN BD11 cells were generated by the electrofusion of New England
Deaconess Hospital rat pancreatic beta cells with immortal clonal RINm5F islet cells [49].
The insulin secretion from clonal BRIN-BD11 cells and mouse islets was observed as per a
previous description [50]. Plant extract was incubated with or without known modulators
of insulin secretion at 1.1, 5.6 or 16.7 mM glucose, respectively. Dextran-coated charcoal
radioimmunoassay was used to measure insulin in the aliquoted supernatant samples,
which were stored at−20 ◦C [48]. For the analysis of insulin content, islets were extracted at
4 ◦C for 24 h, and supernatant samples collected after centrifugation for 2 min at 1200 rpm
were stored at −20 ◦C prior to radioimmunoassay [49].

4.3. Membrane Potential and Intracellular Calcium ([Ca2+]i)

To measure the intensity of membrane depolarisation and [Ca2+]i of BRIN-BD11 cells
with A. arabica extract, we used the FLIPR Membrane Potential and [Ca2+]i Assay Kit
(Molecular Devices, Sunnyvale, CA, USA) [49]. In brief, clonal pancreatic beta cells were
seeded on 96-well plates for 18 h at 37 ◦C to allow attachment. The medium was then
removed, and 100 µL KRBB of 5.6 mM glucose at 37 ◦C was added. After 10 min, 100 µL of
FLIPR membrane potential or calcium dye was added, and the cells were incubated for
60 min at 37 ◦C. Signal intensity changes were measured using FlexStation 3 (Molecular
Devices, Sunnyvale, CA, USA).

4.4. Cellular Glucose Uptake

The 3T3 L1 differentiated adipose cells were used to estimate the glucose uptake [51].
The cells were seeded in 24-well plates and kept in an incubator at 37 ◦C for 30 min with A.
arabica in the presence or absence of 100 nM insulin before incubation with 2-NBDG (50 nM)
for 5 min. Every single well was washed twice with ice-cold PBS, and slides were covered
with three to four coverslips. By using a microscope with 10×magnification, four images
of the coverslips were taken in order to measure glucose uptake with fluorescence intensity.

4.5. Insulin Glycation

Insulin glycation in the presence of A. arabica was assessed following a previous
description [52]. During the experiment, incubation of D-glucose (246.5 mM) with hu-
man insulin (1 mg/mL) and NaBH3CN (0.0853 gm/mL) with or without HWAA (8, 40,
200 µg/mL) was performed. A day later, 0.5 M acetic acid was added to stop the reaction.
RP-HPLC was used to measure glycated and nonglycated insulin [31].

4.6. DPP-IV Enzyme Activity In Vitro

The DPP-IV enzyme inhibitory actions of A. arabica were estimated following an
earlier report [43]. The chemical reagents, including 8 mU/mL of DPP-IV enzyme and
200 µM of substrate (Gly-Pro-AMC), were incubated with treatment groups in 96-well
plates and processed as per a previous description [41]. Visual changes in the fluorescence
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were analysed by excitation at 370 nm and emission at 440 nm with a 2.5 nm slit width by
FlexStation 3 (Molecular Devices, Sunnyvale, CA, USA).

4.7. Starch Digestion

Extract effects on starch digestion [53] were measured by incubating A. arabica or
acarbose in starch solution (100 mg) (Sigma-Aldrich, St. Louis, MO, USA). Heat-stable
α-amylase (0.01%) from Bacillus leicheniformis and amyloglucosidase (0.1%) from Rhizopus
mould (Sigma-Aldrich, St. Louis, USA) were added to the mixture after dilution. Final
samples were stored for further analysis of glucose release by utilising the GOD/PAP
method (Randox GL 2623).

4.8. Glucose Diffusion

Cellulose ester (CE) dialysis tubes (20 cm × 7.5 mm, MWCO: 2000, Spectrum, The
Netherland) were employed to estimate glucose diffusion in vitro following a recent
study [54]. The solution of 220 mM glucose (2 mL) was loaded into the tubes in the
presence or absence of treatments (including A. arabica and guar gum). The tubes with
closed ends were placed inside 0.9% NaCl (45 mL) solution with continuous shaking for
24 h at 37 ◦C. The amount of glucose that pierced the tube was assessed.

4.9. Animals

A high-fat diet (20% protein, 45% fat and 35% carbohydrate, 26.15 KJ/g total energy
percentage, Special Diet Service, Essex, UK) was fed to Sprague–Dawley male rats for
150–180 days prior to the study. A standard diet (10% fat, 30% protein and 60% carbohy-
drate, 12.99 KJ/g total energy, Trouw Nutrition, Cheshire, UK) was fed to lean control rats.
Additional experiments to test the effects of quercetin and kaempferol were conducted
to see the improvement in glucose tolerance in 6-week old normal male Swiss albino
mice (Envigo).

4.10. Ethical Approval

The Animal Welfare and Ethical Review Board (AWERB) at Ulster University approved
the studies, performed based on the UK Animals (Scientific Procedures) Act 1986 and EU
Directive 2010/63EU. Precautions were taken to avoid any discomfort with rodents.

4.11. Oral Glucose Tolerance and Plasma DPP-IV

Fasted high-fat-fed rats (12 h) or mice (6 h) were used to see the impact of HWAA
(250 mg/5 mL/kg) and isolated compounds (quercetin and kaempferol) (100 and 70 mg/kg)
on blood glucose control [49]. An oral glucose tolerance test after the administration of
glucose with or without simultaneous treatment with A. arabica was performed. Blood
collected from tail tips at different time points mentioned in the figures was used for
glucose (Figures 3 and 5 for 6 h and Figure 9 for 12 h) and plasma insulin measurement [55].
Enzymatic (DPP-IV) assay in plasma was performed following a previous report [43], as
given above.

4.12. Glucose Homeostasis in Obese Rats

A. arabica (250 mg/5 mL/kg body weight) or 0.9% (w/v) saline vehicle was admin-
istered orally twice a day in high-fat-fed rats for 9 successive days. At a particular time
interval, parameters such as blood glucose and plasma insulin were assessed. Following
6 days of treatment, OGTT (18 mmol/kg) was performed in 12 fasted rats. At the comple-
tion of the study, pancreatic tissues were extracted according to a previous report [49].

4.13. Islet Morphology Studies in Obese Rats

Pancreatic tissues were sliced into 5 to 8 µM sections, fixed, processed, stained and
analysed [56]. Sections were incubated with both a primary antibody (mouse anti-insulin
(1:500) and guinea pig anti-glucagon (1:400)) and secondary antibody mixture (Alexa Fluor
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594 goat anti-mouse antibody and Alexa Fluor 488 goat anti-guinea pig antibody) at 4 ◦C
(overnight) and room temperature, respectively. Subsequent to staining the nucleus with
4′,6-diamidino-2-phenylindole (DAPI), the slides were mounted and analysed following a
previous description [2].

4.14. Purification of Crude Extracts

The filtered extract was injected into a Vydac 218TP1022 (Grace, Deerfield, IL, USA)
preparative stainless-steel column (C-18, 10 µm) (22 × 250 mm2) at a 5.0 mL/min flow
rate with 0.12% (v/v) TFA/water. Acetonitrile concentration in the eluting solvent was
mounted using linear gradients to 20% for 10 min and to 70% over a period of 40 min.
Major peaks were tested for insulinotropic activity, as detailed above, and positive fractions
were purified again at a flow rate of 1.0 mL/min following recent studies [2,57].

4.15. Determination of Molecular Weight

LC-MS was implemented to measure the molecular weight of selected peak fractions
of A. arabica obtained from RP-HPLC via ESI-MS. A Spectra System LC (Thermo Separation
Products) containing a Kinetex 5 µm F5 LC column (150 × 4.6 mm2) was used to identify
the identity of the peak fraction as previously reported [58].

4.16. Confirmation of Purity and Identity

The tentative identification of compounds using HPLC and LC-MS was further anal-
ysed via nuclear magnetic resonance (NMR) [59]. A 600 MHz Bruker AVIII HD spectrome-
ter outfitted with a 5 mm BBO H and F cryogenic test was implemented to record NMR
spectra. The 1H NMR and 13C NMR spectra were obtained by implementing standard
one-dimensional composite pulse sequencing (zgcppr) and the aid of the use of the re-
verse gated-decoupling pulse sequence (zgig), respectively, and the parameters were set
according to a previous description [59].

4.17. Statistical Analysis

For all statistical analysis and interpretation of data, GraphPad Prism 5 was used.
Data were analysed using the unpaired Student’s t-test (nonparametric, with two-tailed
p-values) and one-way ANOVA with the help of Bonferroni post hoc tests. Values were
introduced as the mean ± SEM, and p < 0.05 was set as the significant limit.

5. Conclusions

In conclusion, the present study provides definitive evidence for the antidiabetic
properties of A. arabica bark in high-fat-fed (HFF) obese diabetic rats and reveals that
this is due to a broad spectrum of pancreatic and extrapancreatic actions. These serve to
enhance insulin secretion, promote insulin action and cellular glucose uptake together
with retardation of the digestion and absorption of glucose from food. Phytochemicals
responsible for β-cell effects include quercetin, kaempferol and catechin. Such herbal
remedies based on A. arabica might provide a validated, accessible, and useful adjunctive
diabetic treatment, especially in the areas that do not have easy access to established
therapies. However, further studies are warranted to assess the potential use of A. arabica
and its marker compounds in the prevention and management of type 2 diabetes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10061190/s1, Figure S1: Dose-dependent effects of various concentrations of (A & B) hot
water extract of A. arabica bark, (C) peak samples, (D) Quercetin & (E) Kaempferol at 5.6/16.7mM
glucose on LDH release from BRIN-BD11 cells.
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STZ Streptozotocin
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GIP Glucose-dependent insulinotropic polypeptide
DPP-IV Dipeptidyl peptidase-IV
LDL Low-density lipoprotein
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