71 research outputs found
First report of Plesiochelys etalloni and Tropidemys langii from the Late Jurassic of the UK and the palaeobiogeography of plesiochelyid turtles
Plesiochelyidae is a clade of relatively large coastal marine turtles that inhabited the shallow epicontinental seas that covered western Europe during the Late Jurassic. Although the group has been reported from many deposits, the material is rarely identified at the species level. Here, we describe historical plesiochelyid material from the Kimmeridge Clay Formation of England and compare it with contemporaneous localities from the continent. An isolated basicranium is referred to the plesiochelyid Plesiochelys etalloni based notably on the presence of a fully ossified pila prootica. This specimen represents the largest individual known so far for this species and is characterized by remarkably robust features. It is, however, uncertain whether this represents an ontogenetic trend towards robustness in this species, some kind of specific variation (temporal, geographical or sexual), or an abnormal condition of this particular specimen. Four other specimens from the Kimmeridge Clay are referred to the plesiochelyid Tropidemys langii. This contradicts a recent study that failed to identify this species in this formation. This is the first time, to the best of our knowledge, that the presence of Plesiochelys etalloni and Tropidemys langii is confirmed outside the Swiss and French Jura Mountains. Our results indicate that some plesiochelyids had a wide palaeobiogeographic distribution during the Kimmeridgian
A reassessment of the late jurassic turtle Eurysternum wagleri (Eucryptodira, Eurysternidae)
Eurysternum wagleri is one of the first named, yet most poorly understood turtles from the Late Jurassic of Europe. Over the years, many specimens have been referred to and many species synonymized with E. wagleri, but little consensus is apparent, and the taxonomy is therefore highly confusing. Based on the rare, only known illustration of the lost holotype and on the reassessment of select individuals, the species E. wagleri is recharacterized herein. Eurysternum wagleri is diagnosed by a deep pygal notch, a carapace with a pentagonal outline, a contribution of vertebral 5 to the posterior carapace margin, three cervical scales, very wide vertebral scales with a well-developed radiating pattern, well-developed costoperipheral fontanelles in medium-sized individuals, a plastron connected to the carapace by ligaments, gracile, peg-like bony projections of the hyo- and hypoplastra, and large, oval-to-quadrangular lateral plastral fontanelles. A lectotype is designated for Acichelys redenbacheri, and this taxon is interpreted as the junior subjective synonym of Eurysternum wagleri. All other, previously proposed synonymies are rejected, because they lack characters that would allow diagnosing them as E. wagleri
A Jurassic stem pleurodire sheds light on the functional origin of neck retraction in turtles
Modern turtles are composed of two monophyletic groups, notably diagnosed by divergent neck retraction mechanisms. Pleurodires (side-necked turtles) bend their neck sideways and protect their head under the anterior margin of the carapace. Cryptodires (hidden-necked turtles) withdraw their neck and head in the vertical plane between the shoulder girdles. These two mechanisms of neck retraction appeared independently in the two lineages and are usually assumed to have evolved for protective reasons. Here we describe the neck of Platychelys oberndorferi, a Late Jurassic early stem pleurodire, and find remarkable convergent morphological and functional similarities with modern cryptodires. Partial vertical neck retraction in this taxon is interpreted to have enabled fast forward projection of the head during underwater prey capture and offers a likely explanation to the functional origin of neck retraction in modern cryptodires. Complete head withdrawal for protection may therefore have resulted from an exaptation in that group
A review of the fossil record of turtles of the clade Thalassochelydia
The Late Jurassic (Oxfordian to Tithonian) fossil record of Europe and South America has yielded a particularly rich assemblage of aquatic pan-cryptodiran turtles that are herein tentatively hypothesized to form a monophyletic group named Thalassochelydia. Thalassochelydians were traditionally referred to three families, Eurysternidae, Plesiochelyidae, and Thalassemydidae, but the current understanding of phylogenetic relationships is insufficient to support the monophyly of either group. Given their pervasive usage in the literature, however, these three names are herein retained informally. Relationships with marine turtles from the Cretaceous have been suggested in the past, but these hypotheses still lack strong character support. Thalassochelydians are universally found in near-shore marine sediments and show adaptations to aquatic habitats, but isotopic evidence hints at a broad spectrum of specializations ranging from freshwater aquatic to fully marine. A taxonomic review of the group concludes that of 68 named taxa, 27 are nomina valida, 18 are nomina invalida, 18 are nomina dubia, and 5 nomina oblita
The comparative osteology of Plesiochelys bigleri n. sp., a new coastal marine turtle from the Late Jurassic of Porrentruy (Switzerland)
During the Late Jurassic, several groups of eucryptodiran turtles inhabited the shallow epicontinental seas of Western Europe. Plesiochelyidae are an important part of this first radiation of crown-group turtles into coastal marine ecosystems. Fossils of Plesiochelyidae occur in many European localities, and are especially abundant in the Kimmeridgian layers of the Swiss Jura Mountains (Solothurn and Porrentruy). In the mid-19th century, the quarries of Solothurn (NW Switzerland) already provided a large amount of fossil turtles, most notably Plesiochelys etalloni, the best-known plesiochelyid species. Recent excavations in the Porrentruy area (NW Switzerland) revealed new fossils of Plesiochelys, including numerous well-preserved shells with associated cranial and postcranial material.Out of 80 shells referred to Plesiochelys, 41 are assigned to a new species, Plesiochelys bigleri n. sp., including a skull–shell association. We furthermore refer 15 shells to Plesiochelys etalloni, and 24 shells to Plesiochelys sp. Anatomical comparisons show that Plesiochelys bigleri can clearly be differentiated from Plesiochelys etalloni by cranial features. The shell anatomy and the appendicular skeleton of Plesiochelys bigleri and Plesiochelys etalloni are very similar. However, a statistical analysis demonstrates that the thickness of neural bones allows to separate the two species based on incomplete material. This study furthermore illustrates the extent of intraspecific variation in the shell anatomy of Plesiochelys bigleri and Plesiochelys etalloni
A taxonomic review of the Late Jurassic eucryptodiran turtles from the Jura Mountains (Switzerland and France)
Background. Eucryptodiran turtles from the Late Jurassic (mainly Kimmeridgian) deposits of the Jura Mountains (Switzerland and France) are among the earliest named species traditionally referred to the Plesiochelyidae, Thalassemydidae, and Eurysternidae. As such, they are a reference for the study of Late Jurassic eucryptodires at the European scale. Fifteen species and four genera have been typified based on material from the Late Jurassic of the Jura Mountains. In the past 50 years, diverging taxonomic reassessments have been proposed for these turtles with little agreement in sight. In addition, there has been a shift of focus from shell to cranial anatomy in the past forty years, although most of these species are only represented by shell material. As a result, the taxonomic status of many of these 15 species remains ambiguous, which prevents comprehensive comparison of Late Jurassic turtle assemblages throughout Europe and hinders description of new discoveries, such as the new assemblage recently unearthed in the vicinity of Porrentruy, Switzerland.Methods. An exhaustive reassessment of the available material provides new insights into the comparative anatomy of these turtles. The taxonomic status of each of the 15 species typified based on material from the Late Jurassic of the Jura Mountains is evaluated. New diagnoses and general descriptions are provided for each valid taxon.Results. Six out of the 15 available species names are recognized as valid: Plesiochelys etalloni, Craspedochelys picteti, Craspedochelys jaccardi, Tropidemys langii, Thalassemys hugii, and ‘Thalassemys’ moseri. The intraspecific variability of the shell of P. etalloni is discussed based on a sample of about 30 relatively complete specimens from Solothurn, Switzerland. New characters are proposed to differentiate P. etalloni, C. picteti, and C. jaccardi, therefore rejecting the previously proposed synonymy of these forms. Based partly on previously undescribed specimens, the plastral morphology of Th. hugii is redescribed. The presence of lateral plastral fontanelles is notably revealed in this species, which calls into question the traditional definitions of the Thalassemydidae and Eurysternidae. Based on these new data, Eurysternum ignoratum is considered a junior synonym of Th. hugii. The Eurysternidae are therefore only represented by Solnhofia parsonsi in the Late Jurassic of the Jura Mountains. Finally, ‘Th.’ moseri is recognized as a valid species, although a referral to the genus Thalassemys is refuted
Novel insights into the morphology of Plesiochelys bigleri from the early Kimmeridgian of Northwestern Switzerland
Plesiochelyidae were relatively large coastal marine turtles, which inhabited the epicontinental seas of Western Europe during the Late Jurassic. Their fossil record can be tracked in Germany, Switzerland, the United Kingdom, France, Spain and Portugal. The Jura Mountains, in northwestern Switzerland, have been the main source for the study of this group, mostly thanks to the rich and famous historical locality of Solothurn. In the last two decades, numerous plesiochelyid remains have been collected from Kimmeridgian deposits (Lower Virgula Marls and Banné Marls) in the area of Porrentruy (Canton of Jura, Switzerland). This material was revealed by construction works of the A16 Transjurane highway between 2000 and 2011, and led to the recent description of the new species Plesiochelys bigleri. In the years 2014 and 2016, new fragmentary turtle material was collected from the Banné Marls (Reuchenette Formation, lower Kimmeridgian) near the village of Glovelier, Canton of Jura, Switzerland. The new material consists of a complete shell, additional shell elements, a few bones from the appendicular and vertebral skeleton, and a fragmentary basicranium. This material can be confidently assigned to the species P. bigleri. It supports the presence of this species in the Banné Marls, slightly extends its spatial distribution and confirms the differences with the closely related species P. etalloni. The new material reveals that the split between the cerebral and palatine branches of the internal carotid artery occurs in a vertical plane in P. bigleri. This condition could not be observed in the type material due to poor preservation. This new character clearly distinguishes P. bigleri from P. etalloni and seems to be unique among thalassochelydians
A review of the fossil record of nonbaenid turtles of the clade Paracryptodira
The fossil record of nonbaenid paracryptodires ranges from the Late Jurassic (Kimmeridgian) to the Paleocene of North America and Europe only. Earlier remains may be present as early as the Middle Jurassic (Bathonian). Only a single dispersal event is documented between the two continents after their breakup during the Cretaceous in the form of the appearance of the Compsemys lineage in the Paleocene of France. Nonbaenid paracryptodires were restricted to freshwater aquatic environments but display adaptations to diverse feeding strategies consistent with generalist, gape-and-suction, and hypercarnivorous feeding. Current phylogenies recognize two species-rich subclades within Paracryptodira, Baenidae and Pleurosternidae, which jointly form the clade Baenoidea. A taxonomic review of nonbaenid paracryptodires concludes that of 34 named taxa, 11 are nomina valida, 15 are nomina invalida, and 8 are nomina dubia
- …