6 research outputs found

    Autogenic Training Relaxation Helping Postpartum Mothers to Achieve Successful Breastfeeding on Early Lactation Period

    Full text link
    Introduction: The numbers of breastfeeding failures are mostly caused by mothers` disbelief to themselves. One method that can be done to overcome these problems in accordance with the self-care nursing theory is the autogenic training relaxation. This method teaches mothers to be self-sufficient in building a positive intention and motivation to help the process of breastfeeding. This study aimed to examine the influence of autogenic training relaxation to the effectiveness of breastfeeding and the enhancement of breast milk volume on maternal postpartum. Method: By using an experimental posttest only-non equivalent control group design, 26 samples were taken based on the criteria and divided into two groups by matching technuiqe. autogenic training was given through MP3 Player for 3 weeks. Post-test observation conducted on the third week by home visit. Via Christi Breastfeeding Assessment Tool Jan Riordan modifications used to assess the effectiveness of breastfeeding, and to measure the milk ejection volume, used weighing test using electronic baby scales. Data were analyzed using one-tailed independent t test with α ≤ 0.05. Result: The analysis showed that mothers who did autogenic training relaxation could breastfeed more effectively and had greater average volume of milk ejection than the control group (p = 0.000 and p = 0.001). Discussion: It can be concluded that autogenic relaxation training techniques affect the effectiveness of breastfeeding and breast milk volume. These results can be considered that autogenic training as an intervention in program of support for breastfeeding mothers

    Additional file 2: of Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx

    No full text
    Supplemental datasheets. Datasheet S1: Summary of the annotation of the human and felid degradomes. Datasheet S2: List of orphan genes with expression levels in different organs. Datasheet S3: List of potential chromosomal rearrangements with respect to domestic cat. Datasheet S4: Gene Ontology terms enriched in proteins that duplicated at specific points in the lynx, cat, and tiger phylogeny. Datasheet S5: List of putative pseudogenes. Datasheet S6: Partitions identified by Saguaro as yielding alternative topologies from a whole genome alignment of Felidae. Datasheet S7: List of genes with signatures of positive selection. Datasheet S8: List of Gene Ontology terms significantly enriched in windows of high and low diversity in Iberian lynx populations or of high of low difference with respect to Eurasian. (XLSX 340 kb

    Additional file 1: of Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx

    No full text
    Supplemental information. Additional details on methods and results, including additional tables (Tables S1–S37) and figures (Figures S1–S45). Section 1: Samples, libraries and sequencing. Section 2: Genome assembly. Section 3: Genome annotation. Section 4: Functional annotation. Section 5: Manual annotation and comparative analysis of lynx protease genes. Section 6: Transcriptome characterization. Section 7: Evolutionary profiling and expression of lncRNAs. Section 8: Lynx orphan genes. Section 9: Eurasian and Iberian lynx divergence Section 10: Demographic history. Section 11: Karyotype. Section 12: Genome alignments and synteny analysis. Section 13: Phylogenomics. Section 14: Positive selection. Section 15: Transposable elements dynamics. Section 16: Substitution patterns. Section 17: Segmental duplications. Section 18: Variant discovery and genotype calling. Section 19: Runs of homozygosity (ROH) and individual inbreeding. Section 20: Genomic averages of population genetics parameters. Section 21: Variation and divergence at coding sequences. Section 22: X chromosome versus autosomes genetic diversity. Section 23: Patterns of diversity across the genome. Section 24: Linkage disequilibrium. Section 25: The Iberian lynx genome browser. Section 26: References. (PDF 10 MB
    corecore