5 research outputs found

    Perceptually Uniform Construction of Illustrative Textures

    Full text link
    Illustrative textures, such as stippling or hatching, were predominantly used as an alternative to conventional Phong rendering. Recently, the potential of encoding information on surfaces or maps using different densities has also been recognized. This has the significant advantage that additional color can be used as another visual channel and the illustrative textures can then be overlaid. Effectively, it is thus possible to display multiple information, such as two different scalar fields on surfaces simultaneously. In previous work, these textures were manually generated and the choice of density was unempirically determined. Here, we first want to determine and understand the perceptual space of illustrative textures. We chose a succession of simplices with increasing dimensions as primitives for our textures: Dots, lines, and triangles. Thus, we explore the texture types of stippling, hatching, and triangles. We create a range of textures by sampling the density space uniformly. Then, we conduct three perceptual studies in which the participants performed pairwise comparisons for each texture type. We use multidimensional scaling (MDS) to analyze the perceptual spaces per category. The perception of stippling and triangles seems relatively similar. Both are adequately described by a 1D manifold in 2D space. The perceptual space of hatching consists of two main clusters: Crosshatched textures, and textures with only one hatching direction. However, the perception of hatching textures with only one hatching direction is similar to the perception of stippling and triangles. Based on our findings, we construct perceptually uniform illustrative textures. Afterwards, we provide concrete application examples for the constructed textures.Comment: 11 pages, 15 figures, to be published in IEEE Transactions on Visualization and Computer Graphic

    Constraints on the nearby exoplanet Eps Ind Ab from deep near/mid-infrared imaging limits

    Get PDF
    © ESO 2021. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1051/0004-6361/202140730The past decade has seen increasing efforts in detecting and characterising exoplanets by high contrast imaging in the near/mid-infrared, which is the optimal wavelength domain for studying old, cold planets. In this work, we present deep AO imaging observations of the nearby Sun-like star ϵ\epsilon Ind A with NaCo (L′L^{\prime}) and NEAR (10-12.5 microns) instruments at VLT, in an attempt to directly detect its planetary companion whose presence has been indicated from radial velocity (RV) and astrometric trends. We derive brightness limits from the non-detection of the companion with both instruments, and interpret the corresponding sensitivity in mass based on both cloudy and cloud-free atmospheric and evolutionary models. For an assumed age of 5 Gyr for the system, we get detectable mass limits as low as 4.4 MJM_{\rm J} in NaCo L′L^{\prime} and 8.2 MJM_{\rm J} in NEAR bands at 1.5\arcsec from the central star. If the age assumed is 1 Gyr, we reach even lower mass limits of 1.7 MJM_{\rm J} in NaCo L′L^{\prime} and 3.5 MJM_{\rm J} in NEAR bands, at the same separation. However, based on the dynamical mass estimate (3.25 MJM_{\rm J}) and ephemerides from astrometry and RV, we find that the non-detection of the planet in these observations puts a constraint of 2 Gyr on the lower age limit of the system. NaCo offers the highest sensitivity to the planetary companion in these observations, but the combination with the NEAR wavelength range adds a considerable degree of robustness against uncertainties in the atmospheric models. This underlines the benefits of including a broad set of wavelengths for detection and characterisation of exoplanets in direct imaging studies.Peer reviewe

    Perceptually Uniform Construction of Illustrative Textures

    No full text
    Supplemental Material to our Paper "Perceptually Uniform Construction of Illustrative Textures.

    Perception of Line Attributes for Visualization

    No full text
    Supplemental Material to our Paper "Perception of Line Attributes for Visualization"

    Imaging low-mass planets within the habitable zone of α Centauri

    No full text
    Giant exoplanets on wide orbits have been directly imaged around young stars. If the thermal background in the mid-infrared can be mitigated, then exoplanets with lower masses can also be imaged. Here we present a ground-based mid-infrared observing approach that enables imaging low-mass temperate exoplanets around nearby stars, and in particular within the closest stellar system, alpha Centauri. Based on 75-80% of the best quality images from 100h of cumulative observations, we demonstrate sensitivity to warm sub-Neptune-sized planets throughout much of the habitable zone of alpha Centauri A. This is an order of magnitude more sensitive than state-of-the-art exoplanet imaging mass detection limits. We also discuss a possible exoplanet or exozodiacal disk detection around alpha Centauri A. However, an instrumental artifact of unknown origin cannot be ruled out. These results demonstrate the feasibility of imaging rocky habitable-zone exoplanets with current and upcoming telescopes. Imaging of low-mass exoplanets can be achieved once the thermal background in the mid-infrared (MIR) wavelengths can be mitigated. Here, the authors present a ground-based MIR observing approach enabling imaging low-mass temperate exoplanets around nearby stars
    corecore