64 research outputs found
Phenoxodiol protects against Cisplatin induced neurite toxicity in a PC-12 cell model
BACKGROUND: Many commonly used chemotherapeutic agents, such as Cisplatin, are restricted in their potential anti-neoplastic effectiveness by their side effects, with one of the most problematic being induction of peripheral neuropathy. Although a number of different neurotrophic, neuroprotective or anti-oxidant treatments have been tried in order to prevent or treat the neuropathies, to date they have met with limited success. Phenoxodiol is a new chemotherapeutic agent that has anti-proliferative and apoptotic effects on a range of cancer cells. PC12 cells are a commonly used neuronal cell model for examination of neurite outgrowth. In this study we examined whether phenoxodiol could protect against Cisplatin induced neurite inhibition in PC12 cells as an indication of the potential to protect against neuropathy. RESULTS: Using the PC12 neuronal cell line, concentrations of Cisplatin were chosen that induced moderate or strong neurite toxicity within 24 hrs but were not cytotoxic. The effect of Phenoxodiol on Cisplatin induced neurite toxicity was assessed by measurement of neurite outgrowth. Addition of phenoxodiol at 100 nM or 1 microM showed no cytotoxicity and blocked the Cisplatin induced neurite toxicity, while phenoxodiol at 10 microM was cytotoxic and enhanced neurite toxicity of Cisplatin. When Cisplatin was added for 24 hrs, then washed out and the cells allowed to recover for 48 hrs, neurite outgrowth was not restored and addition of phenoxodiol did not further promote recovery or restore the Cisplatin treated cells. CONCLUSION: In addition to its potential as a chemotherapeutic agent Phenoxodiol may thus also have the potential to be used in conjunction with Cisplatin chemotherapy to prevent induction of neuropathy
Chemokines and Inflammatory Mediators Interact to Regulate Adult Murine Neural Precursor Cell Proliferation, Survival and Differentiation
Adult neural precursor cells (NPCs) respond to injury or disease of the CNS by migrating to the site of damage or differentiating locally to replace lost cells. Factors that mediate this injury induced NPC response include chemokines and pro-inflammatory cytokines, such as tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ), which we have shown previously promotes neuronal differentiation. RT-PCR was used to compare expression of chemokines and their receptors in normal adult mouse brain and in cultured NPCs in response to IFNγ and TNFα. Basal expression of many chemokines and their receptors was found in adult brain, predominantly in neurogenic regions, with OB≫SVZ>hippocampus and little or no expression in non-neurogenic regions, such as cortex. Treatment of SVZ-derived NPCs with IFNγ and TNFα (alone and in combination) resulted in significant upregulation of expression of specific chemokines, with CXCL1, CXCL9 and CCL2 most highly upregulated and CCL19 downregulated. Unlike IFNγ, chemokine treatment of NPCs in vitro had little or no effect on survival, proliferation or migration. Neuronal differentiation was promoted by CXCL9, CCL2 and CCL21, while astrocyte and total oligodendrocyte differentiation was not affected. However, IFNγ, CXCL1, CXCL9 and CCL2 promoted oligodendrocyte maturation. Therefore, not only do NPCs express chemokine receptors, they also produce several chemokines, particularly in response to inflammatory mediators. This suggests that autocrine or paracrine production of specific chemokines by NPCs in response to inflammatory mediators may regulate differentiation into mature neural cell types and may alter NPC responsiveness to CNS injury or disease
Partial change in EphA4 knockout mouse phenotype: Loss of diminished GFAP upregulation following spinal cord injury
In a previous study we found that the EphA4 receptor inhibits regeneration following spinal cord injury by blocking regrowth of axons and regulation of astrocyte reactivity. In our original studies using EphA4 null mice [Goldshmit et al., J. Neurosci., 2004] we found attenuated astrocyte reactivity following spinal cord injury. Several other studies have now supported the role of EphA4 in regulating neural regeneration but a recent study [Herrmann et al., Exp. Neurol., 2010] did not find an effect of EphA4 on astrocyte reactivity. Re-examination of astrocytic gliosis following injury in our current cohort of EphA4 null mice revealed that they no longer showed attenuation of astrocyte reactivity, however other EphA4 null mouse phenotypes, such as decreased size of the dorsal funiculus were unaltered. We hypothesised that long-term breeding on the C57Bl/6 background may influence the EphA4-mediated astrocyte phenotype and compared astrocytic gliosis at 4 days following spinal cord injury in wildtype and EphA4 null mice on the C57Bl/6 background and backcrossed C57Bl/6×129Sv(F2) mice, as well as wildtype 129Sv mice. 129Sv mice had increased GFAP expression and increased numbers of reactive GFAP astrocytes compared to C57Bl/6 mice. There was no significant effect of EphA4 deletion on GFAP expression in C57Bl/6 mice or the F2 crosses other than a moderately decreased number of EphA4 null astrocytes in C57Bl/6 mice using one of two antibodies. Therefore, there has been an apparent change in EphA4-mediated astroglial phenotype associated with long term breeding of the EphA4 colony but it does not appear to be influenced by background mouse strain
Differential Gene Expression in the EphA4 Knockout Spinal Cord and Analysis of the Inflammatory Response Following Spinal Cord Injury
Mice lacking the axon guidance molecule EphA4 have been shown to exhibit extensive axonal regeneration and functional recovery following spinal cord injury. To assess mechanisms by which EphA4 may modify the response to neural injury a microarray was performed on spinal cord tissue from mice with spinal cord injury and sham injured controls. RNA was purified from spinal cords of adult EphA4 knockout and wild-type mice four days following lumbar spinal cord hemisection or laminectomy only and was hybridised to Affymetrix All-Exon Array 1.0 GeneChipsâ„¢. While subsequent analyses indicated that several pathways were altered in EphA4 knockout mice, of particular interest was the attenuated expression of a number of inflammatory genes, including Arginase 1, expression of which was lower in injured EphA4 knockout compared to wild-type mice. Immunohistological analyses of different cellular components of the immune response were then performed in injured EphA4 knockout and wildtype spinal cords. While numbers of infiltrating CD3+ T cells were low in the hemisection model, a robust CD11b+ macrophage/microglial response was observed post-injury. There was no difference in the overall number or spread of macrophages/activated microglia in injured EphA4 knockout compared to wild-type spinal cords at 2, 4 or 14 days post-injury, however a lower proportion of Arginase-1 immunoreactive macrophages/activated microglia was observed in EphA4 knockout spinal cords at 4 days post-injury. Subtle alterations in the neuroinflammatory response in injured EphA4 knockout spinal cords may contribute to the regeneration and recovery observed in these mice following injury
EphA4 Blockers Promote Axonal Regeneration and Functional Recovery Following Spinal Cord Injury in Mice
Upregulation and activation of developmental axon guidance molecules, such as semaphorins and members of the Eph receptor tyrosine kinase family and their ligands, the ephrins, play a role in the inhibition of axonal regeneration following injury to the central nervous system. Previously we have demonstrated in a knockout model that axonal regeneration following spinal cord injury is promoted in the absence of the axon guidance protein EphA4. Antagonism of EphA4 was therefore proposed as a potential therapy to promote recovery from spinal cord injury. To further assess this potential, two soluble recombinant blockers of EphA4, unclustered ephrin-A5-Fc and EphA4-Fc, were examined for their ability to promote axonal regeneration and to improve functional outcome following spinal cord hemisection in wildtype mice. A 2-week administration of either of these blockers following spinal cord injury was sufficient to promote substantial axonal regeneration and functional recovery by 5 weeks following injury. Both inhibitors produced a moderate reduction in astrocytic gliosis, indicating that much of the effect of the blockers may be due to promotion of axon growth. These studies provide definitive evidence that soluble inhibitors of EphA4 function offer considerable therapeutic potential for the treatment of spinal cord injury and may have broader potential for the treatment of other central nervous system injuries
Is integration and survival of newborn neurons the bottleneck for effective neural repair by endogenous neural precursor cells?
After two decades of research the existence of adult neural precursor cells and the phenomenon of adult neurogenesis is well established. However, there has been little or no effective harnessing of these endogenous cells to promote functional neuronal replacement following neural injury or disease. Neural precursor cells can respond to neural damage by proliferating, migrating to the site of injury and differentiating into neuronal or glial lineages. However, after a month or so, very few or no newborn neurons can be detected, suggesting that even though neuroblasts are generated, they generally fail to survive as mature neurons and contribute to the local circuitry. Is this lack of survival and integration one of the major bottlenecks that inhibits effective neuronal replacement and subsequent repair of the nervous system following injury or disease? In this perspective article the possibility that this bottleneck can be targeted to enhance the integration and subsequent survival of newborn neurons will be explored and will suggest some possible mechanisms that may need to be modulated for this to occur
Bioinformatic Prediction and Confirmation of beta-Adducin as a Novel Substrate of Glycogen Synthase Kinase 3
It is important to identify the true substrates of protein kinases because this illuminates the primary function of any kinase. Here, we used bioinformatics and biochemical validation to identify novel brain substrates of the Ser/Thr kinase glycogen synthase kinase 3 (GSK3). Briefly, sequence databases were searched for proteins containing a conserved GSK3 phosphorylation consensus sequence ((S/T)PXX(S/T)P or (S/T)PXXX(S/T)P), as well as other criteria of interest (e.g. brain proteins). Importantly, candidates were highlighted if they had previously been reported to be phosphorylated at these sites by large-scale phosphoproteomic studies. These criteria identified the brain-enriched cytoskeleton-associated protein β-adducin as a likely substrate of GSK3. To confirm this experimentally, it was cloned and subjected to a combination of cell culture and in vitro kinase assays that demonstrated direct phosphorylation by GSK3 in vitro and in cells. Phosphosites were mapped to three separate regions near the C terminus and confirmed using phosphospecific antibodies. Prior priming phosphorylation by Cdk5 enhanced phosphorylation by GSK3. Expression of wild type, but not non-phosphorylatable (GSK3 insensitive), β-adducin increased axon and dendrite elongation in primary cortical neurons. Therefore, phosphorylation of β-adducin by GSK3 promotes efficient neurite outgrowth in neurons
Phenoxodiol protects against Cisplatin induced neurite toxicity in a PC-12 cell model-3
<p><b>Copyright information:</b></p><p>Taken from "Phenoxodiol protects against Cisplatin induced neurite toxicity in a PC-12 cell model"</p><p>http://www.biomedcentral.com/1471-2202/8/61</p><p>BMC Neuroscience 2007;8():61-61.</p><p>Published online 1 Aug 2007</p><p>PMCID:PMC1950519.</p><p></p>XD for 24 hrs and the neurite length was determined by measuring the longest neurite on cells with neurites longer than 10 μm. A) PXD alone had no effect on neurite length up to a concentration of 1 μM, however 10 μM PXD decreased neurite length (< 0.001). B) Cisplatin at 1 μg/ml and at 20 μg/ml did not affect neurite length. PXD at 100 nM and 1 μM had little effect on neurite length in the presence of Cisplatin, although there was a slight increase in neurite length with PXD at 100 nM and 20 μg/ml Cisplatin (* < 0.001). The combination of 10 μM PXD and Cisplatin at 1 μg/ml or 20 μg/ml was not different to the effect of 10 μM PXD alone. Data shows combined results of = 3 experiments
- …