21 research outputs found

    Salt marsh sediment bacterial communities maintain original population structure after transplantation across a latitudinal gradient

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PeerJ 6 (2018): e4735, doi:10.7717/peerj.4735.Dispersal and environmental selection are two of the most important factors that govern the distributions of microbial communities in nature. While dispersal rates are often inferred by measuring the degree to which community similarity diminishes with increasing geographic distance, determining the extent to which environmental selection impacts the distribution of microbes is more complex. To address this knowledge gap, we performed a large reciprocal transplant experiment to simulate the dispersal of US East Coast salt marsh Spartina alterniflora rhizome-associated microbial sediment communities across a latitudinal gradient and determined if any shifts in microbial community composition occurred as a result of the transplantation. Using bacterial 16S rRNA gene sequencing, we did not observe large-scale changes in community composition over a five-month S. alterniflora summer growing season and found that transplanted communities more closely resembled their origin sites than their destination sites. Furthermore, transplanted communities grouped predominantly by region, with two sites from the north and three sites to the south hosting distinct bacterial taxa, suggesting that sediment communities transplanted from north to south tended to retain their northern microbial distributions, and south to north maintained a southern distribution. A small number of potential indicator 16S rRNA gene sequences had distributions that were strongly correlated to both temperature and nitrogen, indicating that some organisms are more sensitive to environmental factors than others. These results provide new insight into the microbial biogeography of salt marsh sediments and suggest that established bacterial communities in frequently-inundated environments may be both highly resistant to invasion and resilient to some environmental shifts. However, the extent to which environmental selection impacts these communities is taxon specific and variable, highlighting the complex interplay between dispersal and environmental selection for microbial communities in nature.This research was conducted in the National Estuarine Research Reserve System under an award from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, and National Oceanic and Atmospheric Administration. Support was also provided through funding to Julie Huber from a Brown-MBL Partnership SEED award, the Neal Cornell Endowed Research Fund, and the NSF Center for Dark Energy Biosphere Investigations (C-DEBI) (OCE-0939564). Additional funding was provided to Sarah Corman-Crosby by the National Park Service George Melendez Wright Climate Change Fellowship

    A phage weaponizes a satellite recombinase to subvert viral restriction

    No full text
    Bacteria can acquire mobile genetic elements (MGEs) to combat infection by viruses (phages). Satellite viruses, including the PLEs (phage-inducible chromosomal island-like elements) in epidemic Vibrio cholerae, are MGEs that restrict phage replication to the benefit of their host bacterium. PLEs parasitize the lytic phage ICP1, unleashing multiple mechanisms to restrict phage replication and promote their own spread. In the arms race against PLE, ICP1 uses nucleases, including CRISPR-Cas, to destroy PLE's genome during infection. However, through an unknown CRISPR-independent mechanism, specific ICP1 isolates subvert restriction by PLE. Here, we discover ICP1-encoded Adi that counteracts PLE by exploiting the PLE's large serine recombinase (LSR), which normally mobilizes PLE in response to ICP1 infection. Unlike previously characterized ICP1-encoded anti-PLE mechanisms, Adi is not a nuclease itself but instead appears to modulate the activity of the LSR to promote destructive nuclease activity at the LSR's specific attachment site, attP. The PLE LSR, its catalytic activity, and attP are additionally sufficient to sensitize a PLE encoding a resistant variant of the recombination module to Adi activity. This work highlights a unique type of adaptation arising from inter-genome conflicts, in which the intended activity of a protein can be weaponized to overcome the antagonizing genome

    Analysis of 19 Highly Conserved Vibrio cholerae Bacteriophages Isolated from Environmental and Patient Sources Over a Twelve-Year Period

    No full text
    The Vibrio cholerae biotype “El Tor” is responsible for all of the current epidemic and endemic cholera outbreaks worldwide. These outbreaks are clonal, and it is hypothesized that they originate from the coastal areas near the Bay of Bengal, where the lytic bacteriophage ICP1 (International Centre for Diarrhoeal Disease Research, Bangladesh cholera phage 1) specifically preys upon these pathogenic outbreak strains. ICP1 has also been the dominant bacteriophage found in cholera patient stools since 2001. However, little is known about the genomic differences between the ICP1 strains that have been collected over time. Here, we elucidate the pan-genome and the phylogeny of the ICP1 strains by aligning, annotating, and analyzing the genomes of 19 distinct isolates that were collected between 2001 and 2012. Our results reveal that the ICP1 isolates are highly conserved and possess a large core-genome as well as a smaller, somewhat flexible accessory-genome. Despite its overall conservation, ICP1 strains have managed to acquire a number of unknown genes, as well as a CRISPR-Cas system which is known to be critical for its ongoing struggle for co-evolutionary dominance over its host. This study describes a foundation on which to construct future molecular and bioinformatic studies of these V. cholerae-associated bacteriophages
    corecore