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ABSTRACT
Dispersal and environmental selection are two of the most important factors that

govern the distributions of microbial communities in nature. While dispersal rates

are often inferred by measuring the degree to which community similarity

diminishes with increasing geographic distance, determining the extent to which

environmental selection impacts the distribution of microbes is more complex. To

address this knowledge gap, we performed a large reciprocal transplant experiment

to simulate the dispersal of US East Coast salt marsh Spartina alterniflora rhizome-

associated microbial sediment communities across a latitudinal gradient and

determined if any shifts in microbial community composition occurred as a result of

the transplantation. Using bacterial 16S rRNA gene sequencing, we did not observe

large-scale changes in community composition over a five-month S. alterniflora

summer growing season and found that transplanted communities more closely

resembled their origin sites than their destination sites. Furthermore, transplanted

communities grouped predominantly by region, with two sites from the north and

three sites to the south hosting distinct bacterial taxa, suggesting that sediment

communities transplanted from north to south tended to retain their northern

microbial distributions, and south to north maintained a southern distribution.

A small number of potential indicator 16S rRNA gene sequences had distributions

that were strongly correlated to both temperature and nitrogen, indicating that some

organisms are more sensitive to environmental factors than others. These results

provide new insight into the microbial biogeography of salt marsh sediments

and suggest that established bacterial communities in frequently-inundated

environments may be both highly resistant to invasion and resilient to some

environmental shifts. However, the extent to which environmental selection impacts

these communities is taxon specific and variable, highlighting the complex interplay

between dispersal and environmental selection for microbial communities in nature.
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INTRODUCTION
It is increasingly clear that microbial taxa vary in their ability to disperse across landscapes

(Martiny et al., 2006), and that environmental conditions as well as biological mechanisms

can influence community dynamics post-dispersal. Investigating the interplay between

these variables is key to building better models of microbial biogeography. A wide variety

of studies, spanning coastal salt marshes, oceans, and forest rainwater deposits often

indicate a taxa–area relationship for bacteria, with both geographic distance and

environmental factors giving rise to uneven spatial distributions of microbes in nature

(Angermeyer, Crosby & Huber, 2015;Horner-Devine et al., 2004; Zinger, Boetius & Ramette,

2014; Bell et al., 2005). These distance–decay relationships are thought to be driven by the

interplay between the mechanisms of dispersal, environmental selection, genetic drift,

and random mutation (Hanson et al., 2012; Nemergut et al., 2013). However, the details

of how each mechanism or combination of mechanisms affects the composition of

complex natural communities is not well understood. For instance, both selection and

drift act upon microorganisms after a dispersal event, but the rates of those events are

likely to be highly variable across the diversity of taxa that comprise a complex

microbial community (van der Gast, 2014). This variability can be caused by neutral

effects such as abundance (higher abundance taxa have a better chance of dispersing)

(Livermore & Jones, 2015) or due to active dispersal-mechanism phenotypes (such as

biofilm attachment/detachment) (McDougald et al., 2011). Taxa that are in low

abundance can be more strongly influenced by bottleneck effects in comparison to

more abundant, highly active groups. A further challenge in studying the mechanisms

that drive distance–decay patterns is in the detection of subtle genetic flows caused by

drift and mutation in a diverse natural community (Andam et al., 2016).

Here, we build upon our previous work on microbial biogeography in a salt marsh

model system (Angermeyer, Crosby & Huber, 2015) to examine dispersal and adaptation

of the resident bacterial communities in more detail using a reciprocal transplant

approach. Reciprocal transplantation is a well-established tool in traditional “macro”

ecology, but is infrequently utilized in microbial biogeography. Reciprocal transplantation

effectively simulates a large dispersal event and affords the opportunity to then observe

the effects of such an event on microbial communities (Balser & Firestone, 2005;

Waldrop & Firestone, 2006). Transplants leverage both common garden and

environmental treatment techniques to test for the selection effects of one environment

on multiple communities as well as the effects of multiple environmental gradients on

the replicates of each community (Reed & Martiny, 2007). However, transplant

experiments generally cannot directly observe the rates of genetic drift and mutation

due to the timescales over which these phenomena likely manifest, as well as the high

frequency and depth of DNA sequencing that would be required to detect them.

Previous studies explored how the functional parameters of microbial communities

can shift (Gasol et al., 2002; Comte, Fauteux & del Giorgio, 2013) and how community

taxonomic composition can change (Oakley et al., 2010; Bell, 2010) after transplantation.

Microbial reciprocal transplants have been performed across a wide range of
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environmental systems including: alpine soils (Rui et al., 2015), wetland sediments (Reed

& Martiny, 2013; Morrissey & Franklin, 2015), and decomposing plant litter (St John,

Orwin & Dickie, 2011), among others. These studies employed diverse methodological

approaches to reciprocal transplantation which includes sealing samples to prevent

invasion from host site communities (with nutrient permeability) (Bell, 2010; Reed &

Martiny, 2013; Morrissey & Franklin, 2015), inverting sea-ice cores to alter the

photosynthetic regime vertically (Martin et al., 2011), and swapping gut microbiota

between gnotobiotic zebra fish and mice (Rawls et al., 2006). The duration of the

transplant (time between transplantation and sample recovery) experiments also varies

widely, with studies ranging from two weeks (Reed & Martiny, 2013) to 17 years

(Bond-Lamberty et al., 2016). While a relatively low number of microbial reciprocal

transplant studies have been performed, each study lends important insight into the

ecology and biogeography of microbial communities of a specific environment.

In this study, we considered transplants as simulated dispersal events and asked the

question: Do microbial communities undergo compositional changes in response to

mass dispersal events between similar environments (salt marshes) across a latitudinal

gradient? If so, do these responses correlate to temperature, other environmental shifts,

and/or the geographic transplant-distance experienced by the dispersed community?

We considered four hypotheses for changes that could occur between transplanted

communities in a new host site versus control communities that remained in their

original marsh site: (1) No change—The transplanted community will appear identical

to communities from its original site. This is the null hypothesis indicating no invasion

and no environmental selection occurred in the transplanted community; (2) total

adoption—The transplanted community will change to appear identical to the

communities in its new host marsh. This result indicates that either the transplanted

sediments were completely invaded and replaced by the surrounding marsh communities,

or that environmental selection is overwhelmingly able to reshape the community

structure, or a combination of both; (3) random shift—The transplanted community

will change to something distinct from both origin and host communities. In this case,

the cause could be either a fundamental problem with the transplantation methodology

(e.g., contamination) or the effects of unknown and unmeasured environmental

variables; and (4) host shift—The transplanted community will change to something

in between origin and host communities. This result indicates that invasion and/or

environmental selection is affecting the transplanted community, but it is either

recalcitrant to total adoption or the process takes longer than the duration of

the experiment.

Here we present results of this reciprocal transplant experiment of Spartina

alterniflora rhizome-associated bacterial communities between five salt marshes along

the US East Coast to examine the roles that dispersal and environmental selection play

in driving microbial community structure. The approach builds on previous work of

biogeography of microbial communities in salt marsh sediments and provides new

insights into the impacts of microbial dispersal and selection in the environment.
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MATERIALS AND METHODS
Reciprocal transplantation
Fifteen sediment cores with associated live S. alterniflora roots and stems were

collected from each of five US East Coast salt marshes in March 2010 (15/marsh; 75 total):

Waquoit Bay National Estuarine Research Reserve (WB)—East Falmouth, MA

[41.5806N, 70.5198W]; Prudence Island National Estuarine Research Reserve (PI)—

Portsmouth, RI [41.6249N, 71.3228W]; St. Jones River National Estuarine Research

Reserve (JR)—Dover, DE [39.0889N, 75.4363W]; Rachel Carson National Estuarine

Research Reserve (RC)—Beaufort, NC [34.7221N, 76.6798W]; ACE Basin National

Estuarine Research Reserve (AB)—Bennett’s Point, SC [32.5576N, 80.4365W] (Fig. 1). All

cores were collected from within monospecific stands of tall-form clonal S. alterniflora

with similar peak stem heights that were collected at least 1 m away from the nearest

creek-bank and in a region of each marsh that experienced semi-diurnal tides with less

than 20% submergence per day (Crosby et al., 2015, 2017).

Sediment cores measured 8 cm in diameter by ∼25 cm long and were extracted

from the marsh using serrated stainless-steel manual corer, taking care not to disturb the

internal structure. Triplicate cores from each marsh site were transplanted in a fully

factorial manner to every other marsh site, including a control set re-planted into the

origin site. For example, from the Waquoit Bay salt marsh site, three cores were

transplanted to Prudence Island, three to St. Jones River, three to Rachel Carson, three to

ACE Basin, and three were replanted back into Waquoit Bay. The same process was

Figure 1 Geographic locations of U.S. easy coast study sites. Locations of salt marsh sediment

sampling sites. WB-Waquoit Bay, PI-Prudence Island, JR-Jones River, RC-Rachael Carson, AB-ACE Basin.

Symbols are used to refer to each site in following figures. Base map provided by https://freevectormaps.com/.

Full-size DOI: 10.7717/peerj.4735/fig-1
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repeated for 15 cores from each other site. All transplanted and replanted cores were

maintained at approximately 20 �C (air-conditioned during day, cool ambient at night)

and covered with damp cloth during transport to retain moisture. Cores were kept in

these conditions for one to seven days before replanting, depending on the travel

distance between sites. Cores were planted by creating a fresh core-hole in the host

marsh at the appropriate depth, and carefully placing one transplanted or replanted

core in each hole. Due to local site restrictions, a thin layer of high-permeability,

“weed-blocking” ground cloth was placed around all cores transplanted into the St. Jones

River marsh.

All 75 cores were recovered from each marsh in October 2010, a six-month

transplant duration. Approximately 2 g of sediment were collected with a sterilized

scoopula from an undisturbed region 20 cm below the surface and in the center of

each core. Each sample was suspended in LifeGuard (Mo Bio, Carlsbad, CA, USA) to

preserve its nucleic acids. Sediment was collected in an identical fashion from triplicate,

newly extricated “pristine” cores at each site. The total number of sediment samples

was therefore 18 per marsh (three from each of the other four sites (12 total), three

from that sites replanted controls, and three pristine new samples from the site). Two

transplant samples were unable to be recovered (PI-to-JR #2 and WB-to-AB #3), resulting

in a total of 88 samples.

Environmental measurements
Three sediment samples per site (∼5 g each) were collected in October 2010 when the

transplants were recovered and immediately frozen on dry ice. These samples were

pooled by site, dried at 70 �C for four days, and were analyzed according to Meyer

et al. (2013) using a Thermo Scientific CN Analyzer (Model Flash 2000; ThermoFisher

Scientific, Wilmington, DE, USA) to determine concentrations of total carbon and

nitrogen. Mean air temperature over the course of the transplant experiment was collected

from the nearest National Oceanic and Atmospheric Administration weather station

([Site: Station ID] WB: WAXM3, PI: PTCR1, JR: DRSD1, RC: BFTN7, AB: ACXS1). Mean

average salinity was determined from measurements taken in March, May, July, and

October at each site over the same time period using a YSI Model 85 water quality meter

(YSI, Yellow Springs, OH, USA) (Crosby et al., 2017). Pairwise Mantel tests (Mantel,

1967) and linear regressions were performed between all measured environmental

variables to identify possible correlations.

DNA extraction
Nucleic acids from each sediment sample were extracted using the MoBio Powersoil

RNA/DNA extraction kits (MoBio, Carlsbad, CA, USA), eluted in the provided buffer,

and quantified on a Nanodrop 2000 (ThermoFisher Scientific, Wilmington, DE, USA).

Extracted DNA samples were diluted to achieve ∼10–15 ng/ml standardized

concentrations for downstream applications. DNA was stored at -80 �C.
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16S rRNA gene PCR, sequencing and analysis
Bacterial amplicon generation and sequencing was performed as described previously

(Angermeyer, Crosby & Huber, 2015). Briefly, the v4v5 regions of the bacterial 16S rRNA

gene were amplified and prepared according to Huse et al. (2014). Sequencing was

performed on an Illumina MiSeq sequencer (Illumina, San Diego, CA, USA) at the

W. M. Keck Ecological and Evolutionary Genetics Facility at the Marine Biological

Laboratory in Woods Hole, MA, USA. Reads were merged and quality checked using

illumina-utils (Eren et al., 2013a, 2013b) (code available at https://github.com/meren/

illumina-utils) using a modification of earlier methods (Huse et al., 2007). Sequence data

was subsampled (rarefication) to ensure even sampling across all samples. Operational

taxonomic unit (OTU) clustering at 97% similarity and taxonomic assignments were

performed using QIIME (pick_otus.py, method: uclust) (Caporaso et al., 2010a, 2010b)

and GAST (Huse et al., 2008). Sequences are publicly available at the “The

Visualization and Analysis of Microbial Population Structures” (VAMPS) website

(https://vamps.mbl.edu/) (Huse et al., 2014) under project title: “JAH_TRP_Bv4v5”

and are deposited at the NCBI SRA under accession number PRJNA384656.

Environmental correlations of controls
16S rRNA gene OTU data for replanted controls and pristine controls were extracted

from the complete data set across all sites and used to construct Bray–Curtis dissimilarity

matrices in mothur (Schloss et al., 2009). This was completed for all OTUs as well as

for the top 10 most abundant OTUs across all samples, which produced four distinct

matrices (Replant_all, Replant_top, Pristine_all, and Pristine_top). Pairwise linear

regressions were generated in R (R Core Team, 2014) using the “pairs()” function

between each control matrix and geographic distance (to minimize skew, all dissimilarity

matrices and GeoDist were natural log transformed for this analysis (Martiny et al., 2011).

A pairwise Mantel test was performed concurrently with 999 permutations.

Ordination analyses
The 16S rRNA gene OTU data were parsed into two subsets: all OTUs (the entire

dataset), and top 10 OTUs (the 10 most abundant OTUs across all sites and samples).

For each ordination plot, the specific samples of interest were extracted from a subset

(e.g., only pristine and transplant control samples). Non-metric multidimensional

scaling (nMDS) calculations were performed using the “nmds()” function in mothur

with 999 iterations.

Potential Indicator OTUs
The observed abundances of each specific OTU across all samples were compared to

the degree of environmental change and geographic distance measured between a

transplant sample’s origin site and destination site. For each sample, this provided an

(x, y) coordinate data-point which, when taken together, created a multi-coordinate

dataset. To have spatial consistency between datasets, it was necessary to calculate percent

OTU abundance per sample (observed OTU abundance in a sample/total abundance of
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that OTU across all samples). Similarly, environmental data was natural log transformed

to facilitate comparison between variables. For example, if an OTU abundance was 100

in transplant sample “WB-to-AB” and that OTU total abundance was 1,000 across all

samples, the percent OTU abundance per sample would be 10%. If temperature was the

variable being considered, the ln-transformed temperature increase from site WB-to-AB

is: ln[24.2 �C]–ln[17.1 �C] = 0.296 (Table 1). The (x, y) coordinate would therefore be

(0.296, 0.10) with abundance as the dependent variable. If the next sample to be

evaluated were AB-to-WB (the opposite direction) and the OTU abundance in transplant

sample “AB-to-WB” was 10 (10/1000 = 0.01), then the coordinate would be (-0.296,
0.01). For each OTU and for each environmental variable (excluding percent carbon), an

x-y dataset was populated in this fashion. The results were also curated to only include

OTUs that occurred in >95% of the samples (at least 84 of 88 samples).

A least-squares linear regression test was then performed on each dataset using the

“scipy.stats.linregress()” function in the SciPy Python module (Jones, Oliphant

& Peterson, 2001) to calculate the slope and R-squared value of the best linear fit. To

minimize the possibility of type I error (false positives) when searching for correlations in

a large dataset (63337 OTUs� 4 variables = 253,348 regressions), a Bonferroni correction

was applied to an initially conservative significance cutoff (a = 0.001) resulting in a per-

hypothesis corrected-confidence level of a = 3.9e-9 (a /# regression tests). Therefore, a

regression’s correlation was rejected if a two-sided hypothesis test (null: slope = 0)

returned a P-value� 3.9e-9, which approximately corresponds to R-squared values >0.40.

RESULTS
Transplant recovery
Upon completion of the transplant experiment, the cores were still distinct from the

surrounding host marsh sediments, with a visibly clear delineation between core and

core hole and little-to-no root intrusion between core and surrounding sediment. Most

were recovered with only minor re-coring. However, there was some variability in the

structure of the recovered cores. The cores originating from Waquoit Bay, Prudence

Island, and Jones River (the northern three sites) were almost entirely intact regardless

of the destination host site. Cores from Rachel Carson and especially Ace Basin suffered

some loss of sediment due presumably to tidal erosion. Northern sediments have

more peat and greater root structure whereas southern sites are muddier and tend to

Table 1 Site locations and environmental variables.

Site Lat. (6N) Lon. (6W) %N (Wt) %C (Wt) Salinity (ppt) Air temp (6C)

WB 41.580 70.521 0.92 13.85 25.1 17.1 ± 6.3

PI 41.625 71.324 1.34 23.58 26.6 17.8 ± 6.5

JR 39.089 75.437 0.52 5.99 10.7 20.1 ± 7

RC 34.723 76.675 0.57 8.78 32.3 23 ± 5.6

AB 32.558 80.439 0.51 8.59 26.4 24.2 ± 5.7

Note:
Sites are listed north to south. Nitrogen and carbon values are percent by weight.
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have fewer, larger roots (Crosby et al., 2015). Nevertheless, in all cases there was ample

core remaining to recover the necessary amount of sediment from 20 cm below the

surface from the uncontaminated center of the core. It was also observed that the

survival of the Spartina plants themselves varied by origin. The further south a plant

was transplanted, the more likely the stems were to die, however plants originating

from the southern sites showed little to no mortality regardless of how far north they

were transplanted (Crosby et al., 2017).

Environmental characteristics
Variability between sites was similar to observations made at the same sites during

other parts of the season (Angermeyer, Crosby & Huber, 2015). Air temperature ranged

from 17.1 to 24.2 �C, as expected along the latitudinal gradient. Salinity was lowest at

JR (10.7 ppt) due to its greater distance from the ocean. The other sites were closer to

the coast and had higher salinity (25.1–32.3 ppt). Percent total nitrogen by weight

(0.51–1.34%) and carbon by weight (8.59–23.58%) were lowest in the southern three sites

and relatively higher in the north with a sharp increase at PI (Table 1). Pairwise

mantel tests (M) and linear regression (R2) confirmed that temperature and geographic

distance were very strongly correlated (M = 0.98, R2 = 0.96, P � 0.05) as well as

nitrogen and carbon (M = 0.97, R2 = 0.94, P � 0.05, Fig. S1). There were also

significant correlations between both carbon/nitrogen and geodist/temperature pairs

(M = 0.35–0.49, R2 = 0.12–0.24, P � 0.05, Fig. S1).

Bacterial community composition
The average concentration of extracted DNA was 49.12 ng/ml (stdev ± 24.47) before

standardization. Sequencing of the v4v5 region of the bacterial 16S rRNA gene

generated 3,434,579 high quality sequences with an average length of 376 base pairs.

There were an average of 39,029 (SD ± 11,212) sequences in each sample before

rarefying to an even depth of 14,376 sequences per sample. After rarefaction,

taxonomic identification revealed 57,667 total OTUs across samples at 97% similarity.

Of these, 17,154 singletons were removed, leaving 40,513 OTUs for subsequent analyses.

Analyses of the 16S rRNA gene data revealed a clear difference in bacterial

community composition between the sediment samples that originated in the northern

sites (WB, PI) versus the three southern sites (JR, RC, AB) (Fig. 2). When a sample

originated in the south, its bacterial community tended to be dominated by

Gammaproteobacteria (average relative abundance across all samples from each site:

JR-50%, RC-43%, AB-33%). Within this class, one OTU belonging to the genus Vibrio

(OTU# 32074) dominated in these southern samples (average relative abundance across

all samples from each site: JR-20%, RC-23%, AB-23%). In contrast, Gammaproteobacteria

were at much lower relative abundances (7–8%) in the two northern sites, and the

relative abundance of the same Vibrio OTU was also extremely low (<0.3%). However,

the northern sites were more abundant in Anaerolineae (phylum Chloroflexi) (average

relative abundance across all samples from each site: WB-16%, PI-12%) and

Deltaproteobacteria (average relative abundance across all samples from each site:
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WB-17%, PI-17%) compared to the southern sites, which averaged 3–6% for Anaerolineae

and 8–10% for Deltaproteobacteria. These trends in relative abundance were consistent

for all transplant samples and pristine samples.

Analysis of control samples
Mantel tests and linear regressions of 16S rRNA gene OTUs determined that the

transplant control (cores re-planted in the same marsh) and pristine control (new

cores collected from each marsh at the end of the transplant experiment) microbial

communities were correlated when comparing all OTUs (Replant_all vs. Pristine_all:

M = 0.69, R2 = 0.47, P � 0.05). These statistical tests further showed that datasets

comprised of only the top 10 most abundant 16S rRNA gene OTUs across all samples were

also correlated between replant and pristine controls (Replant_top vs. Pristine_top:

M = 0.71, R2 = 0.50, P � 0.05) (Fig. S2). Additionally, the pristine datasets exhibited a

significant correlation with the geographic distance between sites, which is consistent with

Figure 2 Relative abundance of bacterial 16S rRNA genes among transplant samples and controls. Taxonomic assignments for bacterial 16S

rRNA genes were based on 97% sequence similarity. Only taxa that occur in �5% abundance in any individual sample are colored. Blocks of

samples are arranged by origin site (north to south), and by destination site within each block. The last three columns in each block are the pristine

controls. The hatched columns are the Vibrio sp. subset of Gammaproteobacteria. Grey columns represent all taxa <5% abundance and two samples

that did not amplify. Full-size DOI: 10.7717/peerj.4735/fig-2
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previous findings (Angermeyer, Crosby & Huber, 2015) (Pristine_all vs. GeoDist:M = 0.82,

R2 = 0.68, P � 0.05) and (Pristine_top vs. GeoDist: M = 0.75, R2 = 0.56, P � 0.05)

(Fig. S2).

Ordination analysis
Non-metric multidimensional scaling plots of the Bray–Curtis similarities for 16S rRNA

gene OTUs between transplant control and pristine control samples illustrated that the

two controls grouped together by site (Figs. 3A and 3B). This was true for both all

OTUs and the top 10 most abundant OTUs, although the stress value was relatively high

for all OTUs (Figs. 3A and 3B). When expanded to include all transplant samples,

as well as both controls, labeled by origin site (Figs. 3C and 3D), the transplant

communities grouped more closely with the sites they originated from, particularly

when only the top 10 most abundant OTUs were considered. However, when labeled

by destination site, there were no obvious grouping patterns (Fig. S3).

Potential indicator OTUs
The linear regression analysis identified four potential correlations among three 16S rRNA

gene OTUs (Chloroflexi; Anaerolineae; Anaerolineales; Anaerolinaceae [OTU# 21858],

Proteobacteria; Gammaproteobacteria; Vibrionales; Vibrionaceae; Vibrio [OTU# 32074],

and Proteobacteria; Deltaproteobacteria; Desulfobacterales; Desulfobacteraceae [OTU#

13670]) and a change with a specific environmental variable (Table S1; Fig. 4). Two

correlations were with change in temperature (Anaerolinaceae, Vibrio) and two in

percent nitrogen (Anaerolinaceae, Desulfobacteraceae). Due to the environmental

correlation between carbon and nitrogen, carbon results were excluded from the

results. The R-squared values of the regressions ranged from 0.41 to 0.59 and the slopes

-3.53 to 4.01. The taxonomic identity of the OTUs was determined to the family level

for Anaerolinaceae and Desulfobacteraceae, and to genus for the Vibrio OTU. The total

percent abundances across all samples for each OTU were 0.075% for Anaerolinaceae,

0.241% for Desulfobacteraceae-, and 10.3% for Vibrio.

DISCUSSION
Although distance–decay analyses are an excellent approach to observing the ß-diversity

relationships of microbial communities separated by a range of geographic distances,

they can only examine a “snapshot” of microbial distributions in time (Martiny et al.,

2011). Performing multiple experiments over time can provide additional insight into

how communities change with temporal or seasonal patterns (Fortunato et al., 2013),

but such experiments do not consider the role that dispersal plays in microbial

community distribution patterns. To address this need, we performed a reciprocal

transplant experiment to simulate the dispersal of salt marsh sediment microbial

communities across a latitudinal gradient and over the course of a summer growing

season in an attempt to disentangle the roles that dispersal, environmental selection,

and geographic distance play in driving microbial community changes. Transplant

experiments can be difficult to interpret in many cases due to the challenges of controlling
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for multiple, diverse environmental variables (Reed & Martiny, 2007). However, the

broad, ecosystem-scale environmental similarities (as compared to most other

microbial transplant study systems) over a large latitudinal gradient made these

marshes well-suited to a reciprocal transplantation experiment. We tested the

acceptability of our core-transplant method by comparing communities from control

sediments (removed from each marsh and replanted back into the same site) versus

communities from undisturbed “pristine” control samples collected at the end of the

experiment. An ordination analysis demonstrated that the replanted controls did not

diverge greatly from the natural marsh community state and therefore the methods

were likely sound (Figs. 3A and 3B). The controls used in this study also allowed us to

examine the distance–decay relationships between the same sites as in our previous

study (although with a smaller data set) during a different season (Angermeyer, Crosby &

Huber, 2015), and we confirmed that the trend observed is seasonally consistent (Fig. S2).

Figure 3 nMDS ordination plots of transplant samples and controls. (A) All 16S rRNA gene OTUs for

control samples; (B) Top 10 most abundant 16S rRNA gene OTUs for control samples; (C) All 16S rRNA

gene OTUs for all samples; and (D) Top 10 most abundant 16S rRNA gene OTUs for all samples. “Red”

symbols are pristine control samples, “black” are transplant samples. Transplant samples are labeled by

origin site. Full-size DOI: 10.7717/peerj.4735/fig-3
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This study was designed to determine if microbial community composition

changed after transplantation into a new host marsh and to what, if any, degree

several measured environmental differences between origin and destination marshes

influenced microbial community structure. After five months in a host marsh,

transplanted communities most closely resembled the current state of the sites from

which they originated (Fig. 2). Of the four hypotheses presented in the introduction

(no change, total adoption, random shift, and host shift), the null hypothesis of no change

best matches our results. However, ordination analysis revealed that transplanted

communities grouped by latitudinal region, with Waquoit Bay and Prudence Island in

the north, and Jones River, Rachael Carson, and Ace Basin in the south (Figs. 3C and 3D).

In effect, this meant that sediment communities transplanted from north to south tended

to retain their northern microbial distributions, whereas south to north maintained a

southern distribution. This trend was especially clear when we focused on the top 10 most

Figure 4 Linear regression plots of indicator OTUs. 16S rRNA gene OTUs percent abundance (by

sample) as a function of change in a specific environmental variable for (A) Anaerolinaceae and nitrogen;

(B)Anaerolinaceae and temperature; (C)Desulfobacteraceae and nitrogen; and (D)Vibrio and temperature.

Equations, R-squared values and P-values of each linear regression are provided.

Full-size DOI: 10.7717/peerj.4735/fig-4
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abundant OTUs (Fig. 3D). It is also important to note that the two northern sites are the

closest together spatially and distance–decay curves suggest they have a lower barrier to

dispersal between them than between northern and southern sites in general (Angermeyer,

Crosby & Huber, 2015).

Several recent studies have shown that transplanted communities retain compositions

more closely associated with the communities at their origin sites than the host

locations. In one experiment, deep-sea methane seep carbonates were reciprocally

transplanted between high and low activity methane seeps (Case et al., 2015). The

authors found evidence that microbial carbonate communities were highly resistant

to invasion and maintained 49–90% of their original “high-activity site” taxa after

13 months in a low-activity site. They speculated that these taxa may be “adapted

to cycles of seep quiescence and activation,” which may provide ecological advantages

in fluctuating environments. A second study exchanged soil samples between calcareous

and siliceous glacier forefields for 15 months and found that while seasonal

precipitation caused some temporary diversification of the transplanted communities,

in the end, no large effect of the transplantation was observed on either soil type

(Lazzaro, Gauer & Zeyer, 2011). In a third study, dryland soils were transplanted

across an elevation gradient, and the authors found that although respiration rates of

soils tended to match the host site controls, the microbial community composition

retained a composition most similar to their origin site controls. This result was

especially surprising given that the duration of the transplantation experiment was

17 years. It is generally hypothesized that this experiment’s duration would be ample

to fully acclimatize a transplanted sample to both microbial invasion and seasonal

patterns (Bond-Lamberty et al., 2016). However, this result highlights that actual rates

of drift, mutation, dispersal and selection are poorly constrained for microbes in the

natural world, including how they vary between microbial lineages and habitats.

In our study, the distribution of bacterial OTUs between north and south sites

revealed that the southern sites were highly enriched for one OTU belonging to

the genus Vibrio, while the northern sites had a higher relative abundance of an

Anaerolinaceae OTU and a Desulfobacteraceae OTU. We speculated that the pattern of

Vibrio abundance, in particular, was driven by temperature differences between southern

and northern sites as correlations between the abundances of various Vibrio taxa and

temperature in late summer are well described in the mid-Atlantic US East Coast (Pfeffer,

Hite & Oliver, 2003; Thompson et al., 2004). To confirm if this temperature effect was

responsible for the distributions of Vibrio in our data and to determine if other OTUs

exhibited correlations with any of the environmental variables, we performed a linear

regression analysis with strict threshold cutoffs to only consider the most highly

correlated OTU-environment relationships for further analysis (Table S1). Our analysis

confirmed that one Vibrio OTU had a statistically significant correlation with the

change in temperature experienced by each transplant (Fig. 4D). The negative slope

indicated that as the difference in temperature from origin site to destination site

increased, the Vibrio OTU was less abundant, meaning that in sample cores

transplanted from warmer sites to cooler sites, this OTU was more abundant that
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other transplanted communities. A similar pattern was observed for both Anaerolinaceae

and Desulfobacteraceae OTUs (Figs. 4A and 4C) with a negative correlation to change

in percent nitrogen. It was observed that in sample cores transplanted from sites

high in nitrogen to sites with lower concentrations, these two OTUs were more

abundant than other transplanted communities. Members of the sulfate-reducing

Desulfobacteraceae are known to degrade organic matter and release nutrients such as

nitrogen and phosphorous (Pallud & Van Cappellen, 2006; Almstrand et al., 2016). It is

possible that the transplantation to a site with lower nitrogen may provide additional

metabolic niche space for this organism to increase in abundance or it may simply be a

significantly more hospitable environment than its origin. Relatively little is known about

the metabolism of the Anaerolinaceae family (Yamada et al., 2006), but they may also

play a role in the terminal mineralization of organic matter in low-oxygen sites

(Sinkko et al., 2013). The abundance of this OTU also correlated positively with

increased temperature between origin and host sites (Fig. 4B), which may suggest that

warmer temperatures could facilitate taking advantage of new environmental niches.

It is also important to note that the structure of the sediment cores varied between

northern and southern sites, and that unknown factors relating to the sediment

structure may limit mixing of transplanted and external microbial communities, thus

potentially having an effect on the ability of external organisms to invade, colonize,

or thrive in transplanted cores. While factors pertaining specifically to the structure

of the cores were not measured in this study, we can infer from observed visual

differences and from belowground biomass data collected in other studies (Angermeyer,

Crosby & Huber, 2015; Crosby et al., 2015) that northern sites have more un-degraded

organic matter than in the south and are likely more porous and oxygen permeable.

These differences may play a role in the abundance profiles observed for

the Anaerolinaceae and Desulfobacteraceae OTUs by providing a more anoxic

environment when transplanted to the southern sites.

The linear regression results raise the question of why organisms that are strongly

correlated to an environmental variable maintain their original relative abundances

after transplantation to a site with a large shift in that specific environmental variable.

For example, if Vibrio does much better in warmer locations, why doesn’t it flourish in

transplants from the north moved to the south? Our observations highlight two

important points. First, it is clear that the established microbial communities in our

sediment transplants were resistant to significant invasion from the surrounding host

marsh over the time scale of our experiment, especially among the more abundant taxa.

However, an ordination analysis of the low abundance OTUs (<5% across all samples)

showed there is less definition between the northern and southern sites when these

organisms are also considered (Fig. S4). This result suggests that dispersal out of, or

invasion into, the community is happening at a low rate, or possibly, that niche

occupation is preventing large influxes of diverse colonizing microorganisms

(Brockhurst et al., 2007). Second, our results suggest that salt marsh communities may

be resistant to significant environmental shifts over the course of one growing season.

We are beginning to learn more about the temporal dynamics of salt march microbial
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communities (Bowen et al., 2009), but it is difficult to speculate over what time scales

one would expect a transplanted community to become indistinguishable from its host

marsh. However, as mentioned above, several studies from a variety of environments

have shown that some transplanted communities may not undergo substantial changes,

even over relatively long periods of time. However, neither the apparent resistance to

invasion nor environmental change rules out the possibility that important, possibly large-

scale, shifts are occurring in the active vs. dormant partitions of these microbial

communities. It has been shown recently that the activity of salt marsh-associated microbial

communities can respond drastically to environmental perturbations (Kearns et al., 2016),

and this should be taken into account for future transplant studies if our findings of

community compositional resilience are reflective of actual dispersal events.

Additional factors that we did not directly test are related to the impact of Spartina

itself on the associated microbial community, and include the effects of the mortality

of the northern transplants and the differences in plant genotypes between regions.

The S. alterniflora contained in the transplant cores moved from the northern-most two

sites to the southern-most two generally died or fared much more poorly than transplants

from south to north (Crosby et al., 2017). Although we specifically avoided larger

S. alterniflora roots, our sediment samples likely contained very fine roots that

theoretically classify these communities as part of the rhizosphere, and therefore

potentially subject to plant-related influences. It is likely that the death of the stems

would have an effect on the root uptake of nutrients from the soil and/or the production

of exudates, both of which might have an effect on root-associated microbes. We do

not know how symbiotically-connected these organisms are in our system, but future

transplant experimental designs may be better able to control for plant survival.

Secondly, a recent study by Bowen et al. (2017) found that natural microbial

communities associated with the rhizosphere of another salt marsh plant, Phragmites

australis, were strongly regulated by the specific lineage of P. australis from which they

were sampled. Furthermore, the authors showed that when sterilized plants were

grown in a common-garden experiment, they would, over time, accumulate distinct

microbial communities that were again defined by the plant lineage. While this work is

convincing, it is unclear how applicable the findings are to our S. alterniflora-associated

microbial communities since S. alterniflora along the US East Coast is not divided into

multiple obvious lineages. However, there is some evidence that genetic divergence

exists in this species between northern and southern populations as demonstrated by

haplotype variation (Blum et al., 2007), although the exact boundaries between

haplotype populations are unclear as are the total extent of genetic differences.

Regardless, future studies of microbial ecology in the S. alterniflora rhizosphere may

greatly benefit from considering plant genotype among the potential environmental

factors contributing to the determination of microbial communities.

CONCLUSION
While there is much work yet to be done in understanding the complex roles that

dispersal and environmental selection play in driving the biogeography of
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microorganisms (Evans, Martiny & Allison, 2017), this study adds new information

from an estuarine system to the growing body of evidence that transplanted microbial

communities can be resistant to large-scale compositional shifts over seasonal time scales.

However, this study also demonstrates that despite the fact that the overall community

composition was maintained, the abundances of some potential indicator organisms

were strongly influenced by the environmental shifts experienced after transplantation.

This tension between general resistance to change (Bowen et al., 2009) and the specific

adaption of individual species should be a key area of future study in microbial

biogeography. It underscores not only the complexity of the big picture interactions

between dispersal and environmental selection, but also forces us to consider the cell-level

mechanisms that act on dispersed populations to control invasion, colonization and

survival in new environments.
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