7,154 research outputs found

    Autonomous and controlled motivational regulations for multiple health related behaviors: between- and within-participants analyses

    Get PDF
    Self-determination theory has been applied to the prediction of a number of health-related behaviors with self-determined or autonomous forms of motivation generally more effective in predicting health behavior than non-self-determined or controlled forms. Research has been confined to examining the motivational predictors in single health behaviors rather than comparing effects across multiple behaviors. The present study addressed this gap in the literature by testing the relative contribution of autonomous and controlling motivation to the prediction of a large number of health-related behaviors, and examining individual differences in self-determined motivation as a moderator of the effects of autonomous and controlling motivation on health behavior. Participants were undergraduate students (N = 140) who completed measures of autonomous and controlled motivational regulations and behavioral intention for 20 health-related behaviors at an initial occasion with follow-up behavioral measures taken four weeks later. Path analysis was used to test a process model for each behavior in which motivational regulations predicted behavior mediated by intentions. Some minor idiosyncratic findings aside, between-participants analyses revealed significant effects for autonomous motivational regulations on intentions and behavior across the 20 behaviors. Effects for controlled motivation on intentions and behavior were relatively modest by comparison. Intentions mediated the effect of autonomous motivation on behavior. Within-participants analyses were used to segregate the sample into individuals who based their intentions on autonomous motivation (autonomy-oriented) and controlled motivation (control-oriented). Replicating the between-participants path analyses for the process model in the autonomy- and control-oriented samples did not alter the relative effects of the motivational orientations on intention and behavior. Results provide evidence for consistent effects of autonomous motivation on intentions and behavior across multiple health-related behaviors with little evidence of moderation by individual differences. Findings have implications for the generalizability of proposed effects in self-determination theory and intentions as a mediator of distal motivational factors on health-related behavior

    Condensation transitions in a model for a directed network with weighted links

    Full text link
    An exactly solvable model for the rewiring dynamics of weighted, directed networks is introduced. Simulations indicate that the model exhibits two types of condensation: (i) a phase in which, for each node, a finite fraction of its total out-strength condenses onto a single link; (ii) a phase in which a finite fraction of the total weight in the system is directed into a single node. A virtue of the model is that its dynamics can be mapped onto those of a zero-range process with many species of interacting particles -- an exactly solvable model of particles hopping between the sites of a lattice. This mapping, which is described in detail, guides the analysis of the steady state of the network model and leads to theoretical predictions for the conditions under which the different types of condensation may be observed. A further advantage of the mapping is that, by exploiting what is known about exactly solvable generalisations of the zero-range process, one can infer a number of generalisations of the network model and dynamics which remain exactly solvable.Comment: 23 pages, 8 figure

    Scanning tunneling microscopy simulations of poly(3-dodecylthiophene) chains adsorbed on highly oriented pyrolytic graphite

    Get PDF
    We report on a novel scheme to perform efficient simulations of Scanning Tunneling Microscopy (STM) of molecules weakly bonded to surfaces. Calculations are based on a tight binding (TB) technique including self-consistency for the molecule to predict STM imaging and spectroscopy. To palliate the lack of self-consistency in the tunneling current calculation, we performed first principles density-functional calculations to extract the geometrical and electronic properties of the system. In this way, we can include, in the TB scheme, the effects of structural relaxation upon adsorption on the electronic structure of the molecule. This approach is applied to the study of regioregular poly(3-dodecylthiophene) (P3DDT) polymer chains adsorbed on highly oriented pyrolytic graphite (HOPG). Results of spectroscopic calculations are discussed and compared with recently obtained experimental datComment: 15 pages plus 5 figures in a tar fil

    Who uses foodbanks and why? Exploring the impact of financial strain and adverse life events on food insecurity

    Get PDF
    Background Rising use of foodbanks highlights food insecurity in the UK. Adverse life events (e.g. unemployment, benefit delays or sanctions) and financial strains are thought to be the drivers of foodbank use. This research aimed to explore who uses foodbanks, and factors associated with increased food insecurity. Methods We surveyed those seeking help from front line crisis providers from foodbanks (N = 270) and a comparison group from Advice Centres (ACs) (N = 245) in relation to demographics, adverse life events, financial strain and household food security. Results About 55.9% of foodbank users were women and the majority were in receipt of benefits (64.8%). Benefit delays (31.9%), changes (11.1%) and low income (19.6%) were the most common reasons given for referral. Compared to AC users, there were more foodbank users who were single men without children, unemployed, currently homeless, experiencing more financial strain and adverse life events (P = 0.001). Food insecurity was high in both populations, and more severe if they also reported financial strain and adverse life events. Conclusions Benefit-related problems appear to be a key reason for foodbank referral. By comparison with other disadvantaged groups, foodbank users experienced more financial strain, adverse life events, both increased the severity of food insecurity

    Throughput Maximization in Multiprocessor Speed-Scaling

    Full text link
    We are given a set of nn jobs that have to be executed on a set of mm speed-scalable machines that can vary their speeds dynamically using the energy model introduced in [Yao et al., FOCS'95]. Every job jj is characterized by its release date rjr_j, its deadline djd_j, its processing volume pi,jp_{i,j} if jj is executed on machine ii and its weight wjw_j. We are also given a budget of energy EE and our objective is to maximize the weighted throughput, i.e. the total weight of jobs that are completed between their respective release dates and deadlines. We propose a polynomial-time approximation algorithm where the preemption of the jobs is allowed but not their migration. Our algorithm uses a primal-dual approach on a linearized version of a convex program with linear constraints. Furthermore, we present two optimal algorithms for the non-preemptive case where the number of machines is bounded by a fixed constant. More specifically, we consider: {\em (a)} the case of identical processing volumes, i.e. pi,j=pp_{i,j}=p for every ii and jj, for which we present a polynomial-time algorithm for the unweighted version, which becomes a pseudopolynomial-time algorithm for the weighted throughput version, and {\em (b)} the case of agreeable instances, i.e. for which ri≤rjr_i \le r_j if and only if di≤djd_i \le d_j, for which we present a pseudopolynomial-time algorithm. Both algorithms are based on a discretization of the problem and the use of dynamic programming

    Solving the mystery of booming sand dunes

    Get PDF
    Desert booming can be heard after a natural slumping event or during a sand avalanche generated by humans sliding down the slip face of a large dune. The sound is remarkable because it is composed of one dominant audible frequency (70 to 105 Hz) plus several higher harmonics. This study challenges earlier reports that the dunes’ frequency is a function of average grain size by demonstrating through extensive field measurements that the booming frequency results from a natural waveguide associated with the dune. The booming frequency is fixed by the depth of the surficial layer of dry loose sand that is sandwiched between two regions of higher compressional body wave velocity. This letter presents measurements of the booming frequencies, compressional wave velocities, depth of surficial layer, along with an analytical prediction of the frequency based on constructive interference of propagating waves generated by avalanching along the dune surface

    Reply to comment by B. Andreotti et al. on "Solving the mystery of booming sand dunes"

    Get PDF
    This reply addresses three main issues raised in the comment of Andreotti et al. [2008]. First, the turning of ray paths in a granular material does not preclude the propagation of body waves and the resonance condition described by Vriend et al. [2007]. The waveguide model still holds in the dune for the observed velocities, even with a velocity increase with depth as implied by Andreotti et al. [2008]. Secondly, the method of initiation of spontaneous avalanching does not influence the booming frequency. The frequency is independent of the source once sustained booming starts; it depends on the subsurface structure of the dune. Thirdly, if all data points from Vriend et al. [2007] are included in the analysis (and not an average or selection), no correlation is observed between the sustained booming frequency and average particle diameter

    Effective field theory and dispersion law of the phonons of a non-relativistic superfluid

    Full text link
    We study the recently proposed effective field theory for the phonon of an arbitrary non-relativistic superfluid. After computing the one-loop phonon self-energy, we obtain the low temperature T contributions to the phonon dispersion law at low momentum, and see that the real part of those can be parametrized as a thermal correction to the phonon velocity. Because the phonons are the quanta of the sound waves, at low momentum their velocity should agree with the speed of sound. We find that our results match at order T^4ln(T) with those predicted by Andreev and Khalatnikov for the speed of sound, derived from the superfluid hydrodynamical equations and the phonon kinetic theory. We get also higher order corrections of order T^4, which are not reproduced pushing naively the kinetic theory computation. Finally, as an application, we consider the cold Fermi gas in the unitarity limit, and find a universal expression for the low T relative correction to the speed of sound for these systems.Comment: 14 pages, 2 figures. References adde
    • …
    corecore