31 research outputs found
First insights Into the fine-scale movements of the Sandbar Shark, Carcharhinus plumbeus
The expanding use of biologging tags in studies of shark movement provides an opportunity to elucidate the context and drivers of fine-scale movement patterns of these predators. In May 2017, we deployed high-resolution biologging tags on four mature female sandbar sharks Carcharhinus plumbeus at Ningaloo Reef for durations ranging between 13 and 25.5 h. Pressure and tri-axial motion sensors within these tags enabled the calculation of dive geometry, swimming kinematics and path tortuosity at fine spatial scales (m-km) and concurrent validation of these behaviors from video recordings. Sandbar sharks oscillated through the water column at shallow dive angles, with gliding behavior observed in the descent phase for all sharks. Continual V-shaped oscillatory movements were occasionally interspersed by U-shaped dives that predominately occurred around dusk. The bottom phase of these U-shaped dives likely occurred on the seabed, with dead-reckoning revealing a highly tortuous, circling track. By combining these fine-scale behavioral observations with existing ecological knowledge of sandbar habitat and diet, we argue that these U-shaped dives are likely to be a strategy for bentho-pelagic foraging. Comparing the diving geometry of sandbar sharks with those of other shark species reveals common patterns in oscillatory swimming. Collectively, the fine-scale movement patterns of sandbar sharks reported here are consistent with results of previous biologging studies that emphasize the role of cost-efficient foraging in sharks
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
Elasmobranch diversity across a remote coral reef atoll revealed through environmental DNA metabarcoding
As elasmobranchs are becoming increasingly threatened, efficient methods for monitoring the distribution and diversity of elasmobranch populations are required. Environmental DNA (eDNA) metabarcoding is a progressively applied technique that enables mass identification of entire communities and is an effective method for the detection of rare and elusive species. We performed an eDNA metabarcoding survey for fish communities around a coral reef atoll in the Chagos Archipelago (Central Indian Ocean) and assessed the diversity and distribution of elasmobranch species detected within these communities. Our eDNA survey detected 353 amplicon sequence variants (ASVs) attributed to fishes, 12 of which were elasmobranchs. There were no differences in fish communities based on the presence and absence of ASVs between sample depth (surface and 40 m) or sampling habitat, but communities based on read abundance were significantly different between habitats. The dominant elasmobranch species were grey reef (Carcharhinus amblyrhynchos) and silvertip (C. albimarginatus) sharks, and elasmobranch communities were significantly different between sampling depth and habitat. Overall, we find that eDNA metabarcoding can be used to reveal the diversity of elasmobranchs within broader taxonomic assays, but further research and development of targeted metabarcoding primers may be required before it can be integrated into a toolkit for monitoring these species
First insights into the movements and vertical habitat use of blue marlin (Makaira nigricans) in the eastern North Atlantic
The blue marlin (Makaira nigricans) is a vulnerable migratory fish inhabiting tropical and subtropical pelagic waters of the Atlantic, Pacific and Indian Oceans. The biology and spatial ecology of the species in the eastern North Atlantic is poorly understood, despite being exploited in the region by recreational and commercial fisheries. Here, we present results of the first study to use pop-up satellite archival tags to track blue marlin off Madeira, Portugal (n = 3) and obtain insights into the movements and habitat use of the species within the eastern North Atlantic.publishedVersio
Biologging Tags Reveal Links Between Fine-Scale Horizontal and Vertical Movement Behaviors in Tiger Sharks (Galeocerdo cuvier)
An understanding of the role that large marine predators play in structuring trophic flow and nutrient cycling in marine ecosystems requires knowledge of their fine-scale (m-km) movement behaviors. In this study, biologging tags were used to reveal new insights into the three-dimensional fine-scale movement ecology of tiger sharks (Galeocerdo cuvier) at Ningaloo Reef, Western Australia. Tags deployed on 21 sharks in April-May 2017 for durations of 5–48 h recorded both physical parameters such as depth and temperature, and, through the use of accelerometers, gyroscopes and compasses, in-situ measurements of animal trajectory and locomotion. Animal-borne-video enabled the validation of behavioral signatures, mapping of habitat, and recording of interactions with prey. Collectively, these data were used to examine the link between vertical (oscillations) and horizontal (tortuosity) movements, and link sensor data to prey interactions recorded by the video. This biologging approach revealed complex movements that would otherwise be invisible within the time-depth records provided by traditional tagging techniques. The rate of horizontal turning was not related to vertical oscillations, suggesting that vertical movements occur independently of searching behaviors in tiger sharks. These animals displayed tortuous movements possibly associated with prey searching for 27% of their tracks, and interactions with prey elicited varied responses including highly tortuous paths and burst movements. Accurate speed measurements and GPS anchor points will considerably enhance the value of magnetometer data in future studies by facilitating more accurate dead-reckoning and geo-referencing of area-restricted search behaviors
Connectivity between white shark populations off Central California, USA and Guadalupe Island, Mexico
Marine animals often move beyond national borders and exclusive economic zones resulting in a need for trans-boundary management spanning multiple national jurisdictions. Highly migratory fish vulnerable to over-exploitation require protections at international level, as exploitation practices can be disparate between adjacent countries and marine jurisdictions. In this study we collaboratively conducted an analysis of white shark connectivity between two main aggregation regions with independent population assessment and legal protection programs; one off central California, USA and one off Guadalupe Island, Mexico. We acoustically tagged 326 sub-adult and adult white sharks in central California (n=210) and in Guadalupe Island (n=116) with acoustic transmitters between 2008-2019. Of the 326 tagged white sharks, 30 (9.20%) individuals were detected at both regions during the study period. We used a Bayesian implementation of logistic regression with a binomial distribution to estimate the effect of sex, maturity, and tag location to the response variable of probability of moving from one region to the other. While nearly one in ten individuals in our sample were detected in both regions over the study period, the annual rate of trans-regional movement was low (probability of movement = 0.015 yr-1, 95% credible interval = 0.002, 0.061). Sub-adults were more likely than adults to move between regions and sharks were more likely to move from Guadalupe Island to central California, however, sex, and year were not important factors influencing movement. This first estimation of demographic-specific trans-regional movement connecting US and Mexico aggregations with high seasonal site fidelity represents an important step to future international management and assessment of the northeastern Pacific white shark population as a whole
Connectivity between white shark populations off Central California, USA and Guadalupe Island, Mexico
Marine animals often move beyond national borders and exclusive economic zones resulting in a need for trans-boundary management spanning multiple national jurisdictions. Highly migratory fish vulnerable to over-exploitation require protections at international level, as exploitation practices can be disparate between adjacent countries and marine jurisdictions. In this study we collaboratively conducted an analysis of white shark connectivity between two main aggregation regions with independent population assessment and legal protection programs; one off central California, USA and one off Guadalupe Island, Mexico. We acoustically tagged 326 sub-adult and adult white sharks in central California (n=210) and in Guadalupe Island (n=116) with acoustic transmitters between 2008-2019. Of the 326 tagged white sharks, 30 (9.20%) individuals were detected at both regions during the study period. We used a Bayesian implementation of logistic regression with a binomial distribution to estimate the effect of sex, maturity, and tag location to the response variable of probability of moving from one region to the other. While nearly one in ten individuals in our sample were detected in both regions over the study period, the annual rate of trans-regional movement was low (probability of movement = 0.015 yr-1, 95% credible interval = 0.002, 0.061). Sub-adults were more likely than adults to move between regions and sharks were more likely to move from Guadalupe Island to central California, however, sex, and year were not important factors influencing movement. This first estimation of demographic-specific trans-regional movement connecting US and Mexico aggregations with high seasonal site fidelity represents an important step to future international management and assessment of the northeastern Pacific white shark population as a whole
Emergent research and priorities for shark and ray conservation
Over the past 4 decades there has been a growing concern for the conservation status of elasmobranchs (sharks and rays). In 2002, the first elasmobranch species were added to Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Less than 20 yr later, there were 39 species on Appendix II and 5 on Appendix I. Despite growing concern, effective conservation and management remain challenged by a lack of data on population status for many species, human−wildlife interactions, threats to population viability, and the efficacy of conservation approaches. We surveyed 100 of the most frequently published and cited experts on elasmobranchs and, based on ranked responses, prioritized 20 research questions on elasmobranch conservation. To address these questions, we then convened a group of 47 experts from 35 institutions and 12 countries. The 20 questions were organized into the following broad categories: (1) status and threats, (2) population and ecology, and (3) conservation and management. For each section, we sought to synthesize existing knowledge, describe consensus or diverging views, identify gaps, and suggest promising future directions and research priorities. The resulting synthesis aggregates an array of perspectives on emergent research and priority directions for elasmobranch conservation
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements