1,083 research outputs found

    A Tribute to The Honorable Sam H. Bell (\u2752)

    Get PDF
    The late Judge Sam H. Bell (ā€™52) saw the powerful effect of, and beauty in, words. He wrote and spoke them with precision, with thoughtfulness, and with compassion. And he listened intently to the words of othersā€”to the words of all people from all walks of life. His fundamental humanity, great kindness, and assiduous pursuit of knowledge through perusing of the philosophies, the histories, and the literature of the law permeated his choice of words in his speeches and writings. It is because of these and other qualities of Judge Bellā€™s character as a man and as a judge that the authors are honored to present this Tribute to his life and legacy

    Effects of PPARĪ³ Ligands on Leukemia

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) and retinoic acid receptors (RARs), members of the nuclear receptor superfamily, are transcription factors that regulate a variety of important cellular functions. PPARs form heterodimers retinoid X receptor (RXR), an obligate heterodimeric partner for other nuclear receptors. Several novel links between retinoid metabolism and PPAR responses have been identified, and activation of PPAR/RXR expression has been shown to increase response to retinoids. PPARĪ³ has emerged as a key regulator of cell growth and survival, whose activity is modulated by a number of synthetic and natural ligands. While clinical trials in cancer patients with thiazolidinediones (TZD) have been disappointing, novel structurally different PPARĪ³ ligands, including triterpenoids, have entered clinical arena as therapeutic agents for epithelial and hematopoietic malignancies. Here we shall review the antitumor advances of PPARĪ³, alone and in combination with RARĪ± ligands in control of cell proliferation, differentiation, and apoptosis and their potential therapeutic applications in hematological malignancies

    Cytokine-regulated expression of survivin in myeloid leukemia

    Get PDF
    : Survivin, a member of the inhibitors-of-apoptosis gene family, is expressed in a cell-cycle-dependent manner in all the most common cancers but not in normal differentiated adult tissues. Survivin expression and regulation were examined in acute myeloid leukemia (AML). Survivin was detected by Western blot analysis in all myeloid leukemia cell lines and in 16 of 18 primary AML samples tested. In contrast, normal CD34(+) cells and normal peripheral blood mononuclear cells expressed no or very low levels of survivin. Cytokine stimulation increased survivin expression in leukemic cell lines and in primary AML samples. In cultured primary samples, single-cytokine stimulation substantially increased survivin expression in comparison with control cells, and the combination of G-CSF, GM-CSF, and SCF increased survivin levels even further. Conversely, all-trans retinoic acid significantly decreased survivin protein levels in HL-60, OCI-AML3, and NB-4 cells within 96 hours, parallel to the induction of myelomonocytic differentiation. Using selective pharmacologic inhibitors, the differential involvement of mitogen-activated protein kinase kinase (MEK) and phosphatidylinositol-3 kinase (PI3K) pathways were demonstrated in the regulation of survivin expression. The MEK inhibitor PD98059 down-regulated survivin expression in both resting and GM-CSF-stimulated OCI-AML3 cells, whereas the PI3K inhibitor LY294002 inhibited survivin expression only on GM-CSF stimulation. In conclusion, these results demonstrate that survivin is highly expressed and cytokine-regulated in myeloid leukemias and suggest that hematopoietic cytokines exert their antiapoptotic and mitogenic effects, at least in part, by increasing survivin levels

    At the bedside:Profiling and treating patients with CXCR4-expressing cancers

    Get PDF
    The chemokine receptor, C-X-C chemokine receptor type 4 (CXCR4) and its ligand, C-X-C motif chemokine 12, are key mediators of hematopoietic cell trafficking. Their roles in the proliferation and metastasis of tumor cells, induction of angiogenesis, and invasive tumor growth have been recognized for over 2 decades. CXCR4 is a promising target for imaging and therapy of both hematologic and solid tumors. To date, Sanofi Genzyme's plerixafor is the only marketed CXCR4 inhibitor (i.e., Food and Drug Administration-approved in 2008 for stem cell mobilization). However, several new CXCR4 inhibitors are now being investigated as potential therapies for a variety of fluid and solid tumors. These small molecules, peptides, and Abs include balixafortide (POL6326, Polyphor), mavorixafor (X4P-001, X4 Pharmaceuticals), motixafortide (BL-8040, BioLineRx), LY2510924 (Eli Lilly), and ulocuplumab (Bristol-Myers Squibb). Early clinical evidence has been encouraging, for example, with motixafortide and balixafortide, and the CXCR4 inhibitors appear to be generally safe and well tolerated. Molecular imaging is increasingly being used for effective patient selection before, or early during CXCR4 inhibitor treatment. The use of radiolabeled theranostics that combine diagnostics and therapeutics is an additional intriguing approach. The current status and future directions for radioimaging and treating patients with CXCR4-expressing hematologic and solid malignancies are reviewed. See related review - At the Bench: Pre-Clinical Evidence for Multiple Functions of CXCR4 in Cancer. J. Leukoc. Biol. xx: xx-xx; 2020

    Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells

    Get PDF
    Direct co-operation between sensitiser molecules BAD and NOXA in mediating apoptosis suggests that therapeutic agents which sensitise to BAD may complement agents which sensitise to NOXA. Dynamic BH3 profiling is a novel methodology that we have applied to the measurement of complementarity between sensitiser BH3 peptide mimetics and therapeutic agents. Using dynamic BH3 profiling, we show that the agent TG02, which downregulates MCL-1, sensitises to the BCL-2-inhibitory BAD-BH3 peptide, whereas the BCL-2 antagonist ABT-199 sensitises to MCL-1 inhibitory NOXA-BH3 peptide in acute myeloid leukaemia (AML) cells. At the concentrations used, the peptides did not trigger mitochondrial outer membrane permeabilisation in their own right, but primed cells to release Cytochrome C in the presence of an appropriate trigger of a complementary pathway. In KG-1a cells TG02 and ABT-199 synergised to induce apoptosis. In heterogeneous AML patient samples we noted a range of sensitivities to the two agents. Although some individual samples markedly favoured one agent or the other, in the group as a whole the combination of TG02 + ABT-199 was significantly more cytotoxic than either agent individually. We conclude that dynamic NOXA and BAD BH3 profiling is a sensitive methodology for investigating molecular pathways of drug action and complementary mechanisms of chemoresponsiveness

    Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias

    Get PDF
    : The phosphatidylinositol 3-kinase (PI3K)/AKT protein kinase pathway is involved in cell growth, proliferation, and apoptosis. The functional activation of PI3K/AKT provides survival signals and blockade of this pathway may facilitate cell death. Downstream targets of PI3K-AKT include the proapoptotic protein BAD, caspase-9, NF-kappaB, and Forkhead. We have previously reported that BAD is constitutively phosphorylated in primary acute myeloid leukemia (AML) cells, a post-transcriptional modification, which inactivates its proapoptotic function. In this study, we tested the hypothesis that the inhibition of PI3K by LY294002 results in the dephosphorylation of AKT and BAD, and thus promote leukemia cell apoptosis. We investigated the effects of LY294002 in megakaryocytic leukemia-derived MO7E cells, primary AML and normal bone marrow progenitor cells. In MO7E cells, LY294002 reduced AKT kinase activity, induced dephosphorylation of AKT and BAD, and increased apoptosis. Concomitant inhibition of mitogen-activated protein kinase signaling or combination with all-trans retinoic acid further enhanced apoptosis of leukemic cells. In primary AML samples, clonogenic cell growth was significantly reduced. Normal hematopoietic progenitors were less affected, suggesting preferential targeting of leukemia cells. In conclusion, the data suggest that the inhibition of the PI3K/AKT signaling pathway restores apoptosis in AML and may be explored as a novel target for molecular therapeutics in AML
    • ā€¦
    corecore