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The phosphatidylinositol 3-kinase (PI3K)/AKT protein kinase
pathway is involved in cell growth, proliferation, and apoptosis.
The functional activation of PI3K/AKT provides survival signals
and blockade of this pathway may facilitate cell death. Down-
stream targets of PI3K-AKT include the proapoptotic protein
BAD, caspase-9, NF-jB, and Forkhead. We have previously
reported that BAD is constitutively phosphorylated in primary
acute myeloid leukemia (AML) cells, a post-transcriptional
modification, which inactivates its proapoptotic function. In
this study, we tested the hypothesis that the inhibition of PI3K
by LY294002 results in the dephosphorylation of AKT and BAD,
and thus promote leukemia cell apoptosis. We investigated the
effects of LY294002 in megakaryocytic leukemia-derived MO7E
cells, primary AML and normal bone marrow progenitor cells. In
MO7E cells, LY294002 reduced AKT kinase activity, induced
dephosphorylation of AKT and BAD, and increased apoptosis.
Concomitant inhibition of mitogen-activated protein kinase
signaling or combination with all-trans retinoic acid further
enhanced apoptosis of leukemic cells. In primary AML samples,
clonogenic cell growth was significantly reduced. Normal
hematopoietic progenitors were less affected, suggesting
preferential targeting of leukemia cells. In conclusion, the data
suggest that the inhibition of the PI3K/AKT signaling pathway
restores apoptosis in AML and may be explored as a novel
target for molecular therapeutics in AML.
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Introduction

Phosphatidylinositol 3-kinase (PI3K) can transduce survival
signals from growth factors and cytokines. It contains two
subunits: a p85 regulatory subunit, which activates the enzyme
by translocating it to the plasma membrane upon receiving
signals from receptors, and a p110 subunit with catalytic
activity.1,2 One of the downstream targets of PI3K is the
serine–threonine kinase AKT3 that was initially identified as an
oncogenic retrovirus (AKT 8) in murine lymphomas.4 Binding of
phosphatidylinositol-3,4,5-triphosphate to the PH domain of
AKT induces translocation of AKT to the plasma membrane.5,6

The PI3K-dependent kinases PDK1 and PDK2 (which may be
PDKI, ILK, or AKT itself) phosphorylate T308 and S473, which
are required for complete AKT activation.5,7

The PI3K/AKT pathway is believed to be one of the pivotal
signaling pathways regulating cell growth, proliferation, and
apoptosis.3 Cytokines including GM-CSF and IL-3, upon binding
their receptors, activate PI3K and AKT kinase, which leads to the
induction of a downstream signaling cascade including phos-
phorylation of BAD, caspase-9, NF-kB, and Forkhead proteins.8–

18 Phosphorylation of these AKT substrates results in antiapop-
totic effects. Phosphorylation by AKT of the Forkhead transcrip-
tion factor leads to the retention of the protein in the cytoplasm
where it is unable to induce transcription of proapoptotic FAS-L
and to increase the protein levels of p27kip1, a cell cycle
inhibitor.19 Cytokines including IL-3, GM-CSF, SCF, and TNF
have been reported to induce phosphorylation of the Bcl-2
family member BAD.11,20,21 It is believed that the balance
between antiapoptotic and proapoptotic proteins dictates
whether a cell will survive or undergo apoptosis.22 Nonpho-
sphorylated BAD dimerizes with Bcl-2 or Bcl-XL and abrogates
their anti-apoptotic function at the mitochondrial membrane. In
the presence of IL-3, the PI3K/AKT pathway is activated, and
BAD is phosphorylated at S112. Phosphorylation of BAD
disables its ability to bind to BCL-XL; it instead binds to 14-3-3
in the cytosol resulting in the inactivation of its proapoptotic
function, and the balance is shifted towards survival.23,24

Furthermore, BAD protein can be phosphorylated as a
consequence of the activation of the mitogen-activated protein
kinase (MAPK) pathway.25,26 This indicates that alternative
pathways may affect the function of BAD, and that the AKT and
MAPK pathways intersect and may share common targets. We
have recently reported that BAD is constitutively phosphory-
lated on both residues in all primary acute myeloid leukemia
(AML) samples studied.27 Thus, BAD phosphorylation may
reflect the state of AKT and MAPK/ERK signaling.

The PI3K pathway is negatively regulated by phosphatases.
PTEN/MMAC128–31 and SHIP-232,33 removes the 3-phosphate
and 5-phosphate from the PI3K lipid product PI(3,4,5)P3 to yield
PI(4,5)P2 and PI(3,4)P2, respectively, which prevents AKT
activation. This results in increased signaling through the PI3K
pathway contributing to cell proliferation and resistance to
apoptosis. PTEN is considered a tumor suppressor gene. The
inactivation of PTEN is commonly observed in solid and some
hematopoietic tumors.34–36

Recent evidence suggests that the PI3K/AKT pathway is
constitutively activated in a subset of leukemias. TEL/platelet-
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derived growth factor (PDGF) beta R fusion protein resulting
from the t(5;12) in CMML activates the kinase activity of PI3K
and stimulates phosphorylation of its downstream substrates
including AKT.37 The BCR/ABL fusion protein, a hallmark of
CML, also results in the activation of PI3K/AKT signaling.38 A
recent report demonstrated that factors present in plasma
promote basal survival of B-CLL cells and resistance to cytotoxic
drugs via stimulation of the AKT cytoprotective signaling
pathway.39 Therefore, pharmacological blockade of the PI3K/
AKT pathway may have a potential as a novel strategy for
leukemia therapy.

Wortmannin and LY294002, effective inhibitors of PI3K, have
been shown to decrease cell survival and enhance apoptosis in a
variety of model systems.40–45 This effect has been linked to
changes induced in downstream effectors of AKT, including
dephosphorylation of BAD and caspase-9, the activation of
Forkhead protein, and the inactivation of NF-kB. In the present
study, we report the effects of the inhibition of PI3K with
LY294002 in cytokine-dependent leukemic MO7E cells, in
primary AML cells and in normal bone marrow (BM) progenitors.
We found that LY294002 dephosphorylates AKT and BAD,
induces apoptosis in leukemic cell lines and in primary samples
of AML, and reduces clonogenic growth of AML cells. However,
less pronounced inhibition of colony-forming ability was
observed in normal myeloid progenitor cells, suggesting that
LY294002 may selectively target leukemic, while sparing normal
hematopoietic cells. Combined inhibition of PI3K and MAPK
pathways resulted in decreased cell growth and enhanced
apoptosis. Furthermore, LY294002 exerts an additive effect with
all-trans retinoic acid (ATRA) in inhibiting leukemic cell growth.
These results demonstrate that targeting of the PI3K pathway,
alone or in combination with MAPK inhibition or retinoids, may
have therapeutic applications in the therapy of AML.

Materials and methods

Cells, cell culture, reagents, and preparation of patients
sample

MO7E is a human megakaryocytic leukemia cell line requiring
IL-3 or GM-CSF for proliferation.46 MO7E cells were cultured in
RPMI 1640 medium plus 10% FCS, 1% ampicillin, 1%
streptomycin, with or without IL-3 (0.1 ng/ml), or GM-CSF
(37 U/ml) as indicated. Cells were then incubated at 371C in 5%
CO2. LY294002 (2-[4-morpholinyl]-8-phenyl-[4H]-1-benzopyr-
an-4-one) and ATRA were purchased from Sigma (St Louis, MO,
USA) and dissolved in DMSO. MEK inhibitor PD98059 (20-
amino-30-methoxyflavone) was purchased from Calbiochem-
Novabiochem Corp. (La Jolla, CA, USA). DMSO (0.1%) was
used as a control.

AML patient samples were obtained following informed
consent according to institutional guidelines. All samples had
470% blasts after Ficoll–Hypaque separation. Normal BM cells
were obtained from allogeneic BM transplant donors following
informed consent. In some experiments, low-density BM cells
were separated by Ficoll–Hypaque density-gradient centrifuga-
tion and then enriched by magnetic-activated cell sorting for
CD34þ cells, as described previously.47

Western blot, immunoprecipitation, and kinase assay

After cells were lysed in protein lysis buffer (0.2 million cells in
10ml), an equal amount of protein lysate was placed on an 12%
gel and subjected to SDS-PAGE for 2 h at 100 V, followed by

transfer of the protein on Nytran membranes (S&S, Heween, NH,
USA). Immunoblotting was performed by incubation at room
temperature for 2 h with 5% milk, incubated with the primary
antibody in a 1:1000 dilution for another 2 h, followed by three
washes in phosphate-buffered saline (PBS). The procedure was
repeated for the secondary antibody, after which the blot was
soaked in ECL plus buffer for 1 min and then exposed to film. The
Western blots were analyzed with Imagequant software in the
STORM-860 system (Molecular Dynamics, Sunnyvale, CA, USA)
for quantitation. For immunoprecipitation, 5 million cells were
lysed in 1 ml RIPA buffer. After incubation at 41C for 2 h, anti-
human BAD antibody was added to the supernatant, followed by
G-agarose beads for 1 h at 41C. The immune complex was then
collected for Western blotting, as described. The antibodies to
human BAD, to S-112 and S-136 phosphorylated BAD, to AKT,
and to T-308 and S-427 phosphorylated AKT were from New
England BioLabs (Beverly, MA, USA); antibody to SHIP from
Santa Cruz Biotech (Santa Cruz, CA, USA). The AKT kinase assay
kit was obtained from New England BioLabs and used according
to the manufacturer’s instructions. Briefly, cell lysates (200mg)
were incubated for 2 h with immobilized AKT1 monoclonal
antibody. After extensive washing, the kinase reaction was
performed in the presence of ATP and GSK-3 substrate.
Phosphorylation of GSK-3 was measured by Western blotting
using phospho-GSK-3 antibody.

Flow cytometry detection of apoptotic cells

Annexin V staining: Cells were washed in PBS and
resuspended in 100ml of binding buffer containing Annexin V
(Roche Diagnostic Corporation, Indianapolis, IN, USA). Cells
were analyzed by flow cytometry after the addition of propidium
iodide (PI).48 Annexin V binds to those cells that express
phosphatidylserine on the outer layer of the cell membrane, and
PI stains the cellular DNA of those cells with a compromised
cell membrane. This allows for live cells (unstained with either
fluorochrome) to be discriminated from apoptotic cells (stained
only with Annexin V) and necrotic cells (stained with both
Annexin and PI).49

DNA fragmentation: Aliquots (80ml) of cells were mixed
with 100ml of solution containing 0.1% (v/v) Triton X-100,
0.05 mol/l HCl, 0.15 mol/l NaCl, and 8mg/ml acridine orange
(Polysciences, Warrington, PA, USA). Cell fluorescence was
measured within 5 min of staining using the logarithmic scale of
the FACScan flow cytometer with 488-nm excitation of a 15-mW
argon laser and filters set for green (530 nm) (DNA) and red
(585 nm) (RNA) fluorescence.50 In all experiments, 10 000 events
were stored in list mode for analysis. The percentage of cells in the
‘sub-G1 region’ defined the proportion of apoptotic cells in the
tested populations. Cell debris was defined as events in the lowest
10% range of fluorescence and was eliminated from analysis.

Statistical analysis

Statistical analysis was performed using two-tailed Student’s t-
tests and paired t-tests. Statistical significance was considered
when Po0.05. Unless otherwise indicated, average values were
expressed as mean7s.e. of the mean. All experiments were
repeated at least three times.

AML blast and normal BM colony assay

BM mononuclear cells (1 or 2� 105) containing more than 80%
blasts from the patients with AML were plated in methylcellu-
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lose medium (Methocult, Stem Cell Technologies, Vancouver,
Canada) containing human recombinant growth factors, as
follows: erythropoietin (3 U/ml), IL-6 (20 ng/ml) IL-3 (20 ng/ml),
GM-CSF (20 ng/ml), G-CSF (20 ng/ml), and stem cell factor (SCF)
(50 ng/ml). LY294002 was added at the initiation of cultures at
concentrations of 1, 5, 10, 15, and 20 mM, and control cultures
had DMSO only. Duplicate cultures were incubated in 35-mm
Petri dishes at 371C in a humidified atmosphere of 5% CO2 in
air. AML blast colonies were microscopically evaluated on days
8–10. A blast colony was defined as a cluster of 40 or more
cells.

In three experiments, mononuclear cells from random
allogeneic BM transplant donors were plated in methylcellulose
as described above. Cultures were evaluated for the number of
CFU-GM colonies, defined as a cluster of 40 or more
granulocytes, monocyteFmacrophages, or both.

Results

BAD protein is phosphorylated in all primary AML
samples on S-112 and S-136

AML samples with high blast count were analyzed for BAD
expression by Western blot (n¼ 44). Immunoblot showed a
small shift in BAD protein mobility, suggesting phosphorylation
(data not shown). Using phosphorylation site-specific antibo-
dies, this finding was subsequently confirmed. Figure 1 shows
the results from 11 patient samples. Analysis of leukemic
samples demonstrated that the majority of samples analyzed
contained phosphorylated BAD. The expression of total BAD
was variable; however, in most cases Ser136 and Ser112
phosphorylation levels correlated with the levels of BAD
expression. The constitutive BAD phosphorylation indicates
the activation of the upstream PI3K/AKT or MAPK pathways,
which may promote cell proliferation and survival. It is likely
that the functional protein kinases or phosphatases differ
between patient samples, and that variations in phosphorylation
may be of clinical importance.

Expression and regulation of AKT kinase in AML

Since BAD is phosphorylated in all AML samples, the related
upstream kinase must be functional. Our recent report demon-
strated constitutive activation of MAPK in the majority of
primary AML blasts.51 To assess the activation status of AKT, cell
lysates from primary AML samples with high blast count were
blotted with antibodies recognizing phosphorylated T-308 and
S-473 in AKT (Figure 2a). Total AKT was expressed in all 8/8
AML samples studied and in normal CD34þ cells. AKT was
found to be phosphorylated at S473 and T308 in the majority of

AML samples, albeit to different degree. In contrast, AKT
phosphorylation was not detected in normal CD34þ cells.
Reprobing of the blot with actin showed equal loading in all
lanes. These results are suggestive of constitutive phosphoryla-
tion of AKT in the majority of primary AML samples.

Constitutive phosphorylation of AKT may result from either
the activation of upstream PI3K or from loss of activity of
negative regulators – the phosphatases PTEN or SHIP. In CML,
BAD is phosphorylated in a PI3K-dependent fashion, partially
mediating resistance to apoptosis,52 and the expression of SHIP
was recently reported to be absent or substantially reduced.53

We therefore investigated SHIP expression in primary AML. As
shown in Figure 2b, SHIP was found to be expressed in all AML
samples tested and in normal CD34þ cells.

Since cytokines activate the protein kinase pathway, we
studied the regulation of AKT phosphorylation in primary AML
blasts in response to cytokines. AML blasts were cultured with
GM-CSF, G-CSF, and SCF, alone and in combination. After 48 h,
phosphorylation levels of AKT were induced by each of the
growth factors in comparison with control culture (media only),
as shown in Figure 3. In contrast to cells assayed directly from
the patient where AKT was phosphorylated (Figure 2, patient
#1), incubation in serum-free media with no cytokines led to a
decrease of AKT phosphorylation likely due to a loss of the
microenvironmental stimuli that exert kinase stimulation
through cellular interactions and cytokines. Further, this
indicates that AKT phosphorylation is not cell autonomous.
Hence, the presence of cytokines in cultures may restore part of
the microenvironment’s supportive functions. Therefore, cyto-
kine-supplemented culture was used to examine the effects of
PI3K inhibition on AKT.

PI3K inhibitors block downstream AKT phosphorylation
and kinase activity, resulting in BAD dephosphorylation
in cytokine-dependent leukemic cell lines

To demonstrate that the constitutive phosphorylation of AKT and
BAD in AML is PI3K dependent, we used PI3K inhibitor

Figure 1 Detection of BAD, p-S-112 BAD, and p-S-136 BAD
protein by Western blot using phosphorylation site specific antibodies
in 11 AML patient samples containing 460% blasts.

Figure 2 (a) Detection of AKT, p-S-473 AKT, and p-T-308 AKT
proteins by Western blot using phosphorylation site-specific antibodies
in eight AML patient samples. Normal BM CD34þ (NCD34þ ) cells
was used as a normal control, NIH 3T3 cells treated with PDGF was
blotted as a positive control for the antibodies. b-actin as a loading
control. (b) Expression of p145 SHIP in the same AML samples and in
normal BM CD34þ (NCD34þ ) cells.

PI3K/AKT/BAD in AML
S Zhao et al

269

Leukemia



LY294002 in cytokine-dependent MO7E cells. MO7E cells were
starved for 8 h and LY294002 was added for 1–4 h, followed by
stimulation with either IL-3 or GM-CSF for 4 h. As demonstrated
in Figure 4, the inhibition of PI3K signaling with LY294002
induces a dose-dependent inhibition of AKT phosphorylation
and a similar reduction of AKT kinase activity. Figure 5 shows
the inhibition of BAD phosphorylation by LY294002 in GM-
CSF- or IL-3-stimulated MO7E cells. These data demonstrate that
PI3K is involved in the constitutive phosphorylation of AKT and
BAD in AML cells.

PI3K inhibition decreases viability and induces
apoptosis in MO7E and in primary AML cells

To investigate if the inhibition of AKT and BAD phosphorylation
by LY294002 will affect leukemic cell growth, we determined
MO7E cell viability by Trypan blue staining following 48 h of
treatment with 10 mM with LY294002. The treated samples
showed more than 50% reduction in the number of viable cells
compared to DMSO controls (Figure 6, left panel). In parallel,
cells were analyzed by DNA/RNA flow cytometry, and the
number of ‘sub-G1’ cells was determined as a measure of DNA
fragmentation. The apoptosis rate detected by flow cytometry for

the ‘sub-G1’ population was 15–20%. In addition, a decrease in
the number of S cells was also observed, indicating blockade of
cell proliferation at G1/S by PI3K inhibition (data not shown).

To examine the role of PI3K signaling in primary AML cells,
we tested the effects of LY294002 in a short-term culture assay
of AML samples. A total of 10 separate AML patient samples
were cultured in media containing IL-3 and SCF, conditions
known to support survival of AML blasts. Cells were treated with
LY 294002 at 10, 25, and 50 mM; controls were incubated with
equivalent amounts of DMSO. AML cell survival was analyzed
at 48 h by cell count with Trypan blue exclusion. Two of the 10
samples showed decreased survival only at the highest
concentration (50 mM) of LY294002. However, in 8/10 cases a
consistent dose response to LY294002 was observed, with
decreased viability starting at 10mM (Po0.01). On average, cell
survival was reduced by 33, 43, and 47% at 10, 25, and 50mM

of LY294002, respectively (Figure 6, right panel). In order to
understand the mechanism of decreased AML growth following
the inhibition of PI3K signaling, we analyzed the induction of
apoptosis by sub-G1 flow cytometry (using acridine orange). The
average percentage of apoptotic cells increased by 10–20%
(data not shown, Po0.01). In the same assay, no significant
changes in cell cycle distribution were observed. These data
suggest that the inhibition of PI3K signaling abrogates AML cell
growth primarily through the induction of apoptosis.

Figure 3 Expression of AKT and phosphorylated AKT on S-473
and T-308 following 48 h stimulation with GM-CSF (GM), G-CSF (G),
SCF, and their combinations in AML patient sample. b-actin was used
as a loading control.

Figure 4 Inhibition of the AKT phosphorylation (left) and kinase
activity (right) by LY294002 at 10, 25, and 50mM concentration in
MO7E cells. MO7E cells were starved for 8 h and LY294002 was
added for 1–4 h, followed by stimulation with either IL-3 or GM-CSF
for 4 h. (a) Cell lysates were analyzed by Western blotting using
phospho-Akt antibody (left panel); blots were stripped and reprobed
with total Akt antibody. The bar graph represents the ratio of pAkt to
total Akt; the experimental values are normalized to control untreated
sample designated as ‘1’. (b) Cell lysates were analyzed for activated
Akt kinase using the in vitro kinase assay, as described. The bar graph
represents Akt kinase activity normalized to ‘no treatment control’
(designated as ‘1’).

Figure 5 Detection of BAD and phosphorylated BAD protein on S-
112 and S-136 in MO7E cells. The cells were starved for 8 h in
cytokine-free medium, and GM-CSF (GM, 4 h culture) or IL-3 was
replenished after PI3K blockade with LY294002 (LY) for 4 h. b-actin
was used as a loading control.

Figure 6 MO7E cells (in triplicate) and cells from primary AML
samples (n¼10) were treated with PI3K inhibitor LY294002 (LY) at the
indicated concentrations. At 48 h, the live cells were stained with
Trypan blue and counted; the control cells were treated with same
amount of DMSO. Data are presented as the percentage of viability
compared to DMSO-treated cultures.
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To assess the effects of LY294002 on clonogenic AML
progenitors, blast colony assays were performed. LY294002
induced complete inhibition of clonogenic cell growth in 4/6
AML samples at 5mM (Figure 7). This suggests that LY294002
reduces the viability of the majority of leukemic cells in culture
and that the approximately 50% decrease in viability of
suspension cultures at 48 h underestimates the growth-inhibitory
activity of LY294002 in clonogenic AML cells. In contrast, normal
myeloid progenitors (n¼ 3, Figure 7) were inhibited to a lesser
degree (52% inhibition at 5mM and 60% at 10mM, Po0.01).

Combined blockade of PI3K and MAPK pathways
increase apoptosis in leukemic cells

Since the MAPK pathway may contribute to BAD phosphoryla-
tion25,26 and is frequently activated in AML,51,54 we tested the
effects of simultaneous blockade of the PI3K and MAPK
pathways. When PI3K inhibition was combined with MAPK
inhibitor PD98059 in MO7E cells, additional induction of
apoptosis was observed (Figure 8b). This effect was associated
with markedly decreased viability (Figure 8a). Similar results were
obtained in OCI-AML3 leukemic cells (Figure 9). OCI-AML3 cells
are cytokine independent with constitutively activated MAPK
pathway,51 and express phospho-AKT (not shown).

LY294002 and ATRA increase apoptosis in MO7E cells

LY294002 inhibits PI3K activity and downstream AKT and BAD
phosphorylation, which facilitate the activation of the apoptotic
cascade in MO7E cells. We then postulated that the reduction of
levels of proteins agonistic to BAD, such as Bcl-2 and Bcl-XL,
would further increase the susceptibility to apoptosis. Since
ATRA was found by us to downregulate Bcl-2 and Bcl-XL mRNA
and protein,27,55 the efficacy of a combination of LY294002
with ATRA in inducing apoptosis was assessed (Figure 10). Cell
survival decreased by 7177% with the combined treatment,
while ATRA alone reduced survival only by approximately 30%.
This result was confirmed by the determination of apoptotic
cells by Annexin V binding assay (Figure 10). Similar effects
were observed in primary AML cases (Figure 11).

Discussion

In this study, we report on the phosphorylation of the Bcl-2
family member BAD and the activation of the upstream PI3K/

AKT signaling pathway in AML. Phosphorylation of BAD on
serine 112 and 136 inactivates its proapoptotic function and is
associated with survival. Published results have connected BAD
phosphorylation to two major protein kinase pathways, PI3K-
AKT and MAPK.10,11,25,26 In primary AML cells, we were first to

Figure 7 LY294002 inhibition of AML clonogenic progenitor
growth. AML samples (n¼6, left panel) were cultured for colony
formation of leukemic blast with indicated concentrations of
LY294002. Right panel, effect of LY294002 on the growth of myeloid
progenitors (CFU-GM) from normal BM samples (NBM, n¼ 3). Results
are expressed as the mean7s.e.m. of the percentage of colonies in the
presence of increasing concentrations of LY294002 (1, 5, 10, 15, and
20mM) compared with the number in DMSO-treated cells.

Figure 8 Effects of combined use of PI3K and MAPK inhibitors. To
block the MEK/ERK and the PI3K pathways, MO7E were washed twice
with serum-free RPMI 1640 medium, resuspended at 0.2�106 cells/
ml, and cultured overnight in the absence of GM-CSF. MEK inhibitor
PD98059 (20mM), LY294002 (15mM), or the appropriate concentration
of DMSO was added for 4 h at 371C before the addition of GM-CSF
(100 U/ml). Effects on cell growth were analyzed at 72 h by cell count
with Trypan blue exclusion (a), induction of apoptosis (b) by Annexin
V staining and sub-G1 DNA flow cytometry (acridine orange).
Experiment was repeated twice with identical results.

Figure 9 Combination of PI3K and MAPK inhibitors decreases
growth and induces apoptosis in OCI-AML-3 cells. OCI-AML-3 cells
were washed twice with serum-free medium and incubated with
10 mM of PD98059, 20mM of LY294002, their combinations or DMSO.
Effects on cell growth and apoptosis were analyzed at 48 and 72 h by
cell counts with Trypan blue exclusion and DNA flow cytometry (sub-
G1, acridine orange), respectively.

Figure 10 MO7E cells were cultured in the presence of LY294002
(10 mM), all-trans retinoic acid (ATRA, 1 mM) or the combination of
PI3K inhibitor and ATRA. The control cells were treated with same
amount of DMSO. At 48 h, the live cells were stained with Trypan blue
and counted (a). The apoptotic cells were stained by Annexin V and
measured by flow cytometry (b). These were the average of two
experiments.
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observe BAD phosphorylation in all samples studied, a finding
that indicates constitutive activation of the PI3K/AKT and/or
MAPK signaling pathways. Next, we examined AKT phosphor-
ylation and activation by Western blot in AML samples and
examined normal CD34þ cells for comparison. We noted that
Western blot analysis using phosphorylation-specific antibodies
and kinase assay are both very sensitive in detecting AKT
activation. We found that both AKT sites were phosphorylated in
most AML samples tested, while no phosphorylation was
detected in normal CD34þ cells. Another group recently
reported the constitutive phosphorylation of AKT in a majority
of AML samples,56 confirming our initial observation.57 These
reports establish AKT activation in the vast majority of AML. This
may result from the constitutive activation of the upstream PI3K
pathway, that is, as a result of cytokine stimulation. Indeed, we
demonstrated that cytokines induce AKT phosphorylation in
vitro. However, our studies of AKT phosphorylation were
carried out in fresh samples from AML samples in the absence
of exogenous cytokines, suggesting the existence of genetic
alterations resulting in PI3K/AKT activation. As such, the
amplification of multiple components of the PI3K pathway is a
hallmark of ovarian cancers,58 and a mutated form of the p85
subunit of PI3K has recently been isolated in a Hodgkin’s
lymphoma-derived cell line (CO).59 In addition, deregulated
activation of PI3K may be caused by some Ras mutations60 or
result from the aberrant cytokine signaling, that is, FLT361 or c-
kit mutations.62 Alternatively, the loss of expression or function
of the phosphatases PTEN and SHIP that act as negative
regulators of PI3K can induce constitutive activation of AKT.
In our study, SHIP was expressed in all AML samples studied.
However, a dominant-negative mutation of SHIP with the loss of
the catalytic activity was recently described in 1/30 primary
AML samples,63 suggesting a possible tumor suppressor role of
SHIP in selected AML cases. Furthermore, mutations in PTEN
were described in a limited number of AML cases studied.35

To assess the functional role of PI3K in the activation of AKT,
BAD phosphorylation, and survival of leukemic cells, we
utilized the specific PI3K inhibitor LY294002. First, we tested
the effects of LY294002 in the cytokine-dependent cell line

MO7E. Following treatment with LY294002, AKT phosphoryla-
tion and activity were blocked, and downstream BAD phos-
phorylation was inhibited, resulting in the decrease of cell
survival and induction of apoptosis. Furthermore, LY294002
inhibited cell growth and promoted apoptosis in 8/10 primary
AML samples in suspension culture. Of importance, LY294002
abrogated clonogenic leukemic cell growth in 4/6 samples
tested at 5mM and in 5/6 cases at 10mM. It is conceivable that
nonresponders lack expression of the target protein. Although
the AKT phosphorylation status was not specifically tested in
these samples, the response rate would correlate with the
estimated percentage of PI3K/AKT activation observed in this
and other studies.56 Collectively, these results demonstrate that
the activation of PI3K/AKT signaling supports growth and
survival of primary AML cells.

The differential phosphorylation of AKT suggests that the
activity of the PI3K pathway is elevated in AML, therefore PI3K
inhibition could be a viable therapeutic approach to suppress
leukemic cell growth. In addition, LY294002 has been found to
sensitize leukemic HL-60 cells to chemotherapy.64 In tumor-
bearing mice, LY294002 was reported to reduce the tumor
burden and ascitis. The only side effect observed was reversible
dermatitis; of importance, no hematological toxicity was
observed.43,65 In our study, normal myeloid progenitors were
less affected in clonogenic assays compared to AML blasts;
however, toxicity was observed at high concentration of
LY294002. This may suggest at least partial selectivity for
leukemia cells. Results are also consistent with the lack of
phosphorylated AKT protein in normal CD34þ cells. However,
LY294002 appears to affect all PI3K family proteins including
Class I, II, and III PI3K. Recent results of gene expression analysis
in purified hematopoietic stem cells demonstrated the presence
of the catalytic subunit a in the early hematopoietic progeni-
tors;66 this observation likely explains the observed toxicity in
normal BM progenitors. For clinical use, more specific PI3K and/
or AKT inhibitors need to be identified. So far, there have been
few candidate agents likely to be specific PI3K inhibitors,
including the triterpine glycoside F035 and its derivatives,67 and
LY294002 analogs. Recently, the pyridinyl imidazole inhibitor
SB20358068 was described as blocking PI3K, and farnesyltrans-
ferase inhibition was linked to this pathway as well.69 Of
interest, recent clinical trials with farnesyltransferase inhibitors
demonstrated activity in patients with poor-prognosis leuke-
mias.70,71 Novel AKT inhibitors are being developed, and our
preliminary results demonstrate marked proapoptotic activity in
leukemic cells.72 Alternatively, specific inhibitors of the down-
stream mediators of AKT signaling, such as mTOR, may be of
clinical utility.73

AKT has been associated with drug resistance in daunorubi-
cin-treated leukemic cells,74 and more recently also in ATRA
resistance.75 Clinical trials have documented retinoid resistance
of AML, with the notable exception of APL.76 When LY294002
was combined with ATRA, enhanced inhibition of cell growth
and induction of apoptosis were noted. The induction of
apoptosis following inhibition of the PI3K/AKT signaling may
be associated with caspase-3 activation,77 Bax conformational
changes and its translocation to mitochondria,78 Bcl-279 and
Mcl-1 downregulation,80 and cytochrome c release from
mitochondria.81 While the mechanism of enhanced apoptosis
remains to be investigated, this may provide additional rationale
for using LY294002 in overcoming drug resistance. Future
studies should explore the ability of LY294002 to enhance
retinoid sensitivity or overcome retinoid resistance in AML.

It is known that the MAPK pathway may contribute to
phosphorylation of BAD, and we have recently demonstrated

Figure 11 An example of primary AML blasts cultured with PI3K
inhibitor LY294002 (LY, 10 mM), ATRA (1mM) and the combination of
LY294002 and ATRA for 48 h. The effects on proliferation (% S-phase
cells) and apoptosis (sub-G1 DNA content) was analyzed by DNA flow
cytometry (acridine orange).
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that both, the PI3K and MAPK pathways, are also involved in the
regulation of other downstream antiapoptotic members of the
IAP family (survivin and XIAP).82,83 Furthermore, Raf/MEK/ERK
and PI3K/AKT pathways can synergize to induce cell survival
and cellular transformation,84 and the activation of PI3K
contributes for MEK1-responsive growth and survival.85 We
therefore proposed that the apoptotic effects of PI3K/AKT
inhibitor could be enhanced by cotreatment with MEK inhibitor.
Indeed, the combination of the MAPK inhibitor PD98059 with
LY294002 dramatically decreased cell growth and increased
apoptosis in two different cell lines studied. These results suggest
that multiple signal transduction pathways interact to regulate
apoptosis in AML and that strategies aimed at targeting multiple
signal transduction pathways could be effective in chemother-
apy-resistant leukemias.
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