114 research outputs found

    Nutrient control for a viscous Cahn-Hilliard-Keller-Segel model

    Full text link
    In this paper, we address a distributed control problem for a system of partial differential equations describing the evolution of a tumor that takes the biological mechanism of chemotaxis into account. The system describing the evolution is obtained as a nontrivial combination of a Cahn-Hilliard type system accounting for the segregation between tumor cells and healthy cells, with a Keller-Segel type equation accounting for the evolution of a nutrient species and modeling the chemotaxis phenomenon. First, we develop a robust mathematical background that allows us to analyze an associated optimal control problem. This analysis forced us to select a source term of logistic type in the nutrient equation and to restrict the analysis to the case of two space dimensions. Then, the existence of an optimal control and first-order necessary conditions for optimality are established

    Well-posedness and optimal control for a viscous Cahn-Hilliard-Oono system with dynamic boundary conditions

    Full text link
    In this paper we consider a nonlinear system of PDEs coupling the viscous Cahn-Hilliard-Oono equation with dynamic boundary conditions enjoying a similar structure on the boundary. After proving well-posedness of the corresponding initial boundary value problem, we study an associated optimal control problem related to a tracking-type cost functional, proving first-order necessary conditions of optimality. The controls enter the system in the form of a distributed and a boundary source. We can account for general potentials in the bulk and in the boundary part under the common assumption that the boundary potential is dominant with respect to the bulk one. For example, the regular quartic potential as well as the logarithmic potential can be considered in our analysis

    On a Cahn--Hilliard system with source term and thermal memory

    Get PDF
    A nonisothermal phase field system of Cahn--Hilliard type is introduced and analyzed mathematically. The system constitutes an extension of the classical Caginalp model for nonisothermal phase transitions with a conserved order parameter. It couples a Cahn--Hilliard type equation with source term for the order parameter with the universal balance law of internal energy. In place of the standard Fourier form, the constitutive law of the heat flux is assumed in the form given by the theory developed by Green and Naghdi, which accounts for a possible thermal memory of the evolution. This has the consequence that the balance law of internal energy becomes a second-order in time equation for the thermal displacement or freezing index, that is, a primitive with respect to time of the temperature. Another particular feature of our system is the presence of the source term in the equation for the order parameter, which entails additional mathematical difficulties because the mass conservation of the order parameter is lost. We provide several mathematical results under general assumptions on the source term and the double-well nonlinearity governing the evolution: existence and continuous dependence results are shown for weak and strong solutions to the corresponding initial-boundary value problem

    Multivariate hierarchical analysis of car crashes data considering a spatial network lattice

    Get PDF
    Road traffic casualties represent a hidden global epidemic, demanding evidence-based interventions. This paper demonstrates a network lattice approach for identifying road segments of particular concern, based on a case study of a major city (Leeds, UK), in which 5,862 crashes of different severities were recorded over an eight-year period (2011-2018). We consider a family of Bayesian hierarchical models that include spatially structured and unstructured random effects, to capture the dependencies between the severity levels. Results highlight roads that are more prone to collisions, relative to estimated traffic volumes, in the northwest and south of city-centre. We analyse the Modifiable Areal Unit Problem (MAUP), proposing a novel procedure to investigate the presence of MAUP on a network lattice. We conclude that our methods enable a reliable estimation of road safety levels to help identify "hotspots" on the road network and to inform effective local interventions.Comment: 23 pages, 5 tables, 8 figure

    A rare case of extracranial schwannoma of the hypoglossal nerve located in the parapharyngeal space mimicking a deep neck abscess

    Get PDF
    Schwannomas are neurogenic benign tumors originating from the myelin sheath of peripheral nerves, and hypoglossal Schwannomas account for 5% of nonvestibular ones. Extracranial localizations are substantially rare, especially those affecting exclusively the parapharyngeal space; for this reason, the retrostyloid neoformations could initially masquerade as a carotid tumor or deep organized neck abscess. The purpose of this report is to highlight the importance of a multidisciplinary approach in the correct management of differential diagnosis

    Spatio-temporal point process modelling of fires in Sicily exploring human and environmental factors

    Full text link
    In 2023, Sicily faced an escalating issue of uncontrolled fires, necessitating a thorough investigation into their spatio-temporal dynamics. Our study addresses this concern through point process theory. Each wildfire is treated as a unique point in both space and time, allowing us to assess the influence of environmental and anthropogenic factors by fitting a spatio-temporal separable Poisson point process model, with a particular focus on the role of land usage. First, a spatial log-linear Poisson model is applied to investigate the influence of land use types on wildfire distribution, controlling for other environmental covariates. The results highlight the significant effect of human activities, altitude, and slope on spatial fire occurrence. Then, a Generalized Additive Model with Poisson-distributed response further explores the temporal dynamics of wildfire occurrences, confirming their dependence on various environmental variables, including the maximum daily temperature, wind speed, surface pressure, and total precipitation

    Optimal temperature distribution for a nonisothermal Cahn--Hilliard system with source term

    Get PDF
    In this note, we study the optimal control of a nonisothermal phase field system of Cahn--Hilliard type that constitutes an extension of the classical Caginalp model for nonisothermal phase transitions with a conserved order parameter. The system couples a Cahn--Hilliard type equation with source term for the order parameter with the universal balance law of internal energy. In place of the standard Fourier form, the constitutive law of the heat flux is assumed in the form given by the theory developed by Green and Naghdi, which accounts for a possible thermal memory of the evolution. This has the consequence that the balance law of internal energy becomes a second-order in time equation for the thermal displacement or freezing index, that is, a primitive with respect to time of the temperature. Another particular feature of our system is the presence of the source term in the equation for the order parameter, which entails additional mathematical difficulties because the mass conservation of the order parameter, typical of the classic Cahn--Hilliard equation, is no longer satisfied. In this paper, we analyze the case that the double-well potential driving the evolution of the phase transition is differentiable, either (in the regular case) on the whole set of reals or (in the singular logarithmic case) on a finite open interval; nondifferentiable cases like the double obstacle potential are excluded from the analysis. We prove the Fréchet differentiability of the control-to-state operator between suitable Banach spaces for both the regular and the logarithmic cases and establish the solvability of the corresponding adjoint systems in order to derive the associated first-order necessary optimality conditions for the optimal control problem. Crucial for the whole analysis to work is the so-called ``strict separation property'', which states that the order parameter attains its values in a compact subset of the interior of the effective domain of the nonlinearity. While this separation property turns out to be generally valid for regular potentials in three dimensions of space, it can be shown for the logarithmic case only in two dimensions

    Optimal temperature distribution for a nonisothermal Cahn--Hilliard system in two dimensions with source term and double obstacle potential

    Get PDF
    In this note, we study the optimal control of a nonisothermal phase field system of Cahn--Hilliard type that constitutes an extension of the classical Caginalp model for nonisothermal phase transitions with a conserved order parameter. It couples a Cahn--Hilliard type equation with source term for the order parameter with the universal balance law of internal energy. In place of the standard Fourier form, the constitutive law of the heat flux is assumed in the form given by the theory developed by Green and Naghdi, which accounts for a possible thermal memory of the evolution. This has the consequence that the balance law of internal energy becomes a second-order in time equation for the thermal displacement or freezing index, that is, a primitive with respect to time of the temperature. Another particular feature of our system is the presence of the source term in the equation for the order parameter, which entails further mathematical difficulties because the mass conservation of the order parameter is no longer satisfied. In this paper, we study the case that the double-well potential driving the evolution of the phase transition is given by the nondifferentiable double obstacle potential, thereby complementing recent results obtained for the differentiable cases of regular and logarithmic potentials. Besides existence results, we derive first-order necessary optimality conditions for the control problem. The analysis is carried out by employing the so-called deep quench approximation in which the nondifferentiable double obstacle potential is approximated by a family of potentials of logarithmic structure for which meaningful first-order necessary optimality conditions in terms of suitable adjoint systems and variational inequalities are available. Since the results for the logarithmic potentials crucially depend on the validity of the so-called strict separation property which is only available in the spatially two-dimensional situation, our whole analysis is restricted to the two-dimensional case

    Optimal control of a nonconserved phase field model of Caginalp type with thermal memory and double obstacle potential

    Get PDF
    In this paper, we investigate optimal control problems for a nonlinear state system which constitutes a version of the Caginalp phase field system modeling nonisothermal phase transitions with a nonconserved order parameter that takes thermal memory into account. The state system, which is a first-order approximation of a thermodynamically consistent system, is inspired by the theories developed by Green and Naghdi. It consists of two nonlinearly coupled partial differential equations that govern the phase dynamics and the universal balance law for internal energy, written in terms of the phase variable and the so-called thermal displacement, i.e., a primitive with respect to time of temperature. We extend recent results obtained for optimal control problems in which the free energy governing the phase transition was differentiable (i.e., of regular or logarithmic type) to the nonsmooth case of a double obstacle potential. As is well known, in this nondifferentiable case standard methods to establish the existence of appropriate Lagrange multipliers fail. This difficulty is overcome utilizing of the so-called deep quench approach. Namely, the double obstacle potential is approximated by a family of (differentiable) logarithmic ones for which the existence of optimal controls and first-order necessary conditions of optimality in terms of the adjoint state variables and a variational inequality are known. By proving appropriate bounds for the adjoint states of the approximating systems, we can pass to the limit in the corresponding first-order necessary conditions, thereby establishing meaningful first-order necessary optimality conditions also for the case of the double obstacle potential
    corecore