23 research outputs found

    Analys och riskbedömning för kemiska variabler som styr oorganiskt aluminium i ytvatten

    Get PDF
    Modellverktyget Ă€r robust och kan anvĂ€ndas för bedömningen av Ali halter. En empirisk funktion för skattning av Ali som framtogs tidigare kan dĂ€remot inte anvĂ€ndas. Fluoridkomplexen dominerar Ali inom pH intervallet 5 till 6.5. Modellering kan förklara den kemiska variationen och sĂ€rskilt effekter pĂ„ Ali vid höga fluoridhalter (> 10 ÎŒekv/l = ca 0.2 ppm). I omrĂ„den med lĂ„ga halter av humus (TOC 30 ppb) bör fluorid alltid bestĂ€mmas. BĂ„de alkalinitet och pH kan anvĂ€ndas som första mĂ„tt för risk av höga halter av Ali. En nĂ„gorlunda skarp grĂ€ns mellan höga (> 30 ppb) och lĂ„ga (< 30 ppb) halter av Ali observeras om alkalinitet Ă€r under 0.025 mekv/l. En mindre skarp grĂ€ns observeras nĂ€r pH sjunker under pH 5.6. I omrĂ„den med naturlig höga humushalter (TOC > 15 mg/l) i kombination med naturlig lĂ„ga pH (pH 60 ppb) förekomma. Höga halter av Ali (nĂ€ra till 30 ppb) kan Ă€ven upptrĂ€da nĂ€r pH Ă€r över 6. Detta observerades sĂ€rskilt i kalkade eller omrĂ„den som kalkades tidigare. Även Altot vĂ€rden högre, det Ă€r oklart om dessa högre Ali vĂ€rden Ă€r ekologiskt betydelsefulla. Skillnader i anpassningen av Ali och AliMOD i sjöar och vattendrag tyder pĂ„ att sjöar har en stabilare vattenkemi. I sjöarna kan stabila organiska komplex bildas samt att vissa sjöar verka stĂ„r i jĂ€mvikt med en fastfas Ă€ven nĂ€r pH Ă€r under 6. Altot kan skattas frĂ„n pH och filtrerad abs (absF_420nm/5cm alternativt fĂ€rg) om pH Ă€r över 5.5. Denna ekvation kan anvĂ€ndas för att jĂ€mföra Altot bĂ„de i naturlig sura och försurade omrĂ„den. Halter av Ali kan sedan skattas med hjĂ€lp av grafiska hjĂ€lpmedel eller genom kemisk jĂ€mviktsmodellering. Vid lĂ€gre pH styr andra processer och en enkel och lineĂ€r skattning via bara pH och abs av Altot Ă€r inte möjligt. I ett antal omrĂ„den finns det tydliga samband mellan fluorid och Na vilket gör det möjligt att skatta vĂ€rden för F nĂ€r man bara har tillgĂ„ng till vĂ€rden för natrium. En del omrĂ„den avviker tydlig. Detta beror förmodligen pĂ„ att vattendragen inte nĂ„tt jĂ€mviktslĂ€ge för Ali och/eller att Ali kan pĂ„verkas av havssalt. Halterna Altot frĂ„n ”Kalkslut” och ”Kalkintensiv” Ă€r i genomsnitt systematisk högre Ă€n i ”Refintensiv” nĂ€r pH Ă€r över 5.5. Även vid samma kemiska förhĂ„llanden med avseendet pĂ„ pH och TOC verkar försurade vatten har systematiskt högre Altot. Detta tyder pĂ„ att försurningen har vittrat Al frĂ„n marken. Till följd av detta Ă€r Ali vĂ€rden högre efter kalkavslut

    IKEU 2008 surstötar i vattendrag : Årsrapport episoder

    No full text

    Studier av episodisk försurning i IKEU-projektet

    No full text

    Studier av episodisk försurning i IKEU-projektet

    No full text

    ProvningsjÀmförelser av aluminiumfraktioner : 2001 &amp; 2002

    No full text

    Toxicity of Inorganic Aluminium in Humic Streams

    No full text
    Aluminium (Al) has been recognised as a main toxic factor alongside pH in acidified water ecosystems. The toxic effect of Al has been attributed to inorganic Al (Ali), though there are few in situ studies in ambient humic waters which are the focus of this thesis. The aim was to estimate Ali toxicity and thus also Ali concentrations in Swedish humic streams. Subsequently it is necessary to analyse Ali correctly, which was studied by modelling and method intercalibrations. The hypothesis was that the effect of Ali could be followed via physiological effects and Al accumulation, as well as by mortality. Toxicity was studied by in stream exposures of brown trout (Salmo trutta L.) and two salmonid prey organisms (Gammarus pulex and Baetis rhodani) during spring flood. The modelling of the Ali fraction was performed using monitoring data covering all of Sweden with satisfactory results. The essential variables for Ali modelling were determined; Al, DOC, pH and F, while Fe, Ca and Mg had less effect. The automated analytical procedure for Ali (with cation exchange followed by complexation with pyrocatechol violet) was modified and validated and showed to be the preferred method for laboratory analyses. To avoid detrimental effects for brown trout Ali should be &lt;20 ”g/L and pH &gt;5.0; mortality was high when the Ali was above 50 ”g/L. The invertebrates were more sensitive, as mortalities occurred at pH &lt;6.0 and Ali &gt;15 ”g/L for G. pulex, and at pH &lt;5.7 and Ali &gt;20 ”g/L for B. rhodani. It is prudent to use a wide view and let the most sensitive species set the tolerance limits; a pH above 5.7-6.0 and Ali below 15-20 ”g/L allows the stream ecosystems to thrive. Today, as waters are recovering from acidification, the aim of mitigating liming is to carefully adjust dosage to avoid suboptimal water quality. The thresholds found in this thesis can be used to efficiently but carefully decrease liming, as both Ali and pH levels have to be balanced to sustain the recovering aquatic biota

    Toxicity of Inorganic Aluminium in Humic Streams

    No full text
    Aluminium (Al) has been recognised as a main toxic factor alongside pH in acidified water ecosystems. The toxic effect of Al has been attributed to inorganic Al (Ali), though there are few in situ studies in ambient humic waters which are the focus of this thesis. The aim was to estimate Ali toxicity and thus also Ali concentrations in Swedish humic streams. Subsequently it is necessary to analyse Ali correctly, which was studied by modelling and method intercalibrations. The hypothesis was that the effect of Ali could be followed via physiological effects and Al accumulation, as well as by mortality. Toxicity was studied by in stream exposures of brown trout (Salmo trutta L.) and two salmonid prey organisms (Gammarus pulex and Baetis rhodani) during spring flood. The modelling of the Ali fraction was performed using monitoring data covering all of Sweden with satisfactory results. The essential variables for Ali modelling were determined; Al, DOC, pH and F, while Fe, Ca and Mg had less effect. The automated analytical procedure for Ali (with cation exchange followed by complexation with pyrocatechol violet) was modified and validated and showed to be the preferred method for laboratory analyses. To avoid detrimental effects for brown trout Ali should be &lt;20 ”g/L and pH &gt;5.0; mortality was high when the Ali was above 50 ”g/L. The invertebrates were more sensitive, as mortalities occurred at pH &lt;6.0 and Ali &gt;15 ”g/L for G. pulex, and at pH &lt;5.7 and Ali &gt;20 ”g/L for B. rhodani. It is prudent to use a wide view and let the most sensitive species set the tolerance limits; a pH above 5.7-6.0 and Ali below 15-20 ”g/L allows the stream ecosystems to thrive. Today, as waters are recovering from acidification, the aim of mitigating liming is to carefully adjust dosage to avoid suboptimal water quality. The thresholds found in this thesis can be used to efficiently but carefully decrease liming, as both Ali and pH levels have to be balanced to sustain the recovering aquatic biota

    IKEU - Specialprojekt S9 : Episoder i vattendrag

    No full text
    corecore