2,714 research outputs found
Astroglial-axonal interactions during early stages of myelination in mixed cultures using in vitro and ex vivo imaging techniques
<b>Background</b><p></p>
Myelination is a very complex process that requires the cross talk between various neural cell types. Previously, using cytosolic or membrane associated GFP tagged neurospheres, we followed the interaction of oligodendrocytes with axons using time-lapse imaging in vitro and ex vivo and demonstrated dynamic changes in cell morphology. In this study we focus on GFP tagged astrocytes differentiated from neurospheres and their interactions with axons.<p></p>
<b>Results</b><p></p>
We show the close interaction of astrocyte processes with axons and with oligodendrocytes in mixed mouse spinal cord cultures with formation of membrane blebs as previously seen for oligodendrocytes in the same cultures. When GFP-tagged neurospheres were transplanted into the spinal cord of the dysmyelinated shiverer mouse, confirmation of dynamic changes in cell morphology was provided and a prevalence for astrocyte differentiation compared with oligodendroglial differentiation around the injection site. Furthermore, we were able to image GFP tagged neural cells in vivo after transplantation and the cells exhibited similar membrane changes as cells visualised in vitro and ex vivo.<p></p>
<b>Conclusion</b><p></p>
These data show that astrocytes exhibit dynamic cell process movement and changes in their membrane topography as they interact with axons and oligodendrocytes during the process of myelination, with the first demonstration of bleb formation in astrocytes
Using parent metaphors for learning about the neonatal care experience: an interpretive perspective
© 2019 The Author(s). The final, definitive version of this paper has been published in Journal of Child Health Care by Sage Publications Ltd. All rights reserved. It is available at: https://doi.org/10.1177/1367493519875853.This study focuses on how metaphors are used by parents who have had a premature baby to describe their neonatal care experience and how these can contribute to empathic learning of health professionals. In health, metaphors are commonly used to communicate and explain difficult topics. When patients tell their story, metaphor can be a means of expression from which we can learn about their experience of illness or hospitalisation. Limited research exits on how metaphor can improve our understanding of parent’s emotional experience in neonatal care and subsequently inform education in this field. Employing narrative inquiry within an interpretive, constructivist paradigm, 20 narrative interviews with 23 parents of premature babies were analysed using a process of metaphor identification. Findings revealed common metaphors used to describe experience. Metaphor clusters used by parents in order of frequency were journeying, altered reality, darkness, breaking, connections, fighting, salvation and being on the edge. Parents widely used compelling and emotive metaphors to describe and express both difficult and challenging times as well as progression forward. Metaphors serve as a powerful way for health professionals to learn about the emotional experiences of parents and potentially enhance their empathic understanding.Peer reviewe
Currents and Superpotentials in classical gauge theories: II. Global aspects and the example of Affine gravity
The conserved charges associated to gauge symmetries are defined at a
boundary component of space-time because the corresponding Noether current can
be rewritten on-shell as the divergence of a superpotential. However, the
latter is afflicted by ambiguities. Regge and Teitelboim found a procedure to
lift the arbitrariness in the Hamiltonian framework. An alternative covariant
formula was proposed by one of us for an arbitrary variation of the
superpotential, it depends only on the equations of motion and on the gauge
symmetry under consideration. Here we emphasize that in order to compute the
charges, it is enough to stay at a boundary of spacetime, without requiring any
hypothesis about the bulk or about other boundary components, so one may speak
of holographic charges. It is well known that the asymptotic symmetries that
lead to conserved charges are really defined at infinity, but the choice of
boundary conditions and surface terms in the action and in the charges is
usually determined through integration by parts whereas each component of the
boundary should be considered separately. We treat the example of gravity (for
any space-time dimension, with or without cosmological constant), formulated as
an Affine theory which is a natural generalization of the Palatini and
Cartan-Weyl (vielbein) first order formulations. We then show that the
superpotential associated to a Dirichlet boundary condition on the metric (the
one needed to treat asymptotically flat or AdS spacetimes) is the one proposed
by Katz, Bi\u{c}{\'a}k and Lynden-Bell and not that of Komar. We finally
discuss the KBL superpotential at null infinity.Comment: 16 pages, minor corrections and references added. Final version to
appear in CQ
Epitaxy of hexagonal ABO quantum materials
Hexagonal O oxides (, = cation) are a rich materials class for
realizing novel quantum phenomena. Their hexagonal symmetry, oxygen trigonal
bipyramid coordination and quasi-two dimensional layering give rise to
properties distinct from those of the cubic O perovskites. As bulk
materials, most of the focus in this materials class has been on the rare earth
manganites, MnO ( = rare earth); these materials display coupled
ferroelectricity and antiferromagnetic order. In this review, we focus on the
thin film manifestations of the hexagonal O oxides. We cover the
stability of the hexagonal oxides and substrates which can be used to template
the hexagonal structure. We show how the thin film geometry not only allows for
further tuning of the bulk-stable manganites but also the realization of
metastable hexagonal oxides such as the FeO that combine
ferroelectricity with weak ferromagnetic order. The thin film geometry is a
promising platform to stabilize additional metastable hexagonal oxides to
search for predicted high-temperature superconductivity and topological phases
in this materials class.Comment: The following article has been accepted by Applied Physics Review
Designing and Testing an Inventory for Measuring Social Media Competency of Certified Health Education Specialists
Objective: The aim of this study was to design, develop, and test the Social Media Competency Inventory (SMCI) for CHES and MCHES.
Methods: The SMCI was designed in three sequential phases: (1) Conceptualization and Domain Specifications, (2) Item Development, and (3) Inventory Testing and Finalization. Phase 1 consisted of a literature review, concept operationalization, and expert reviews. Phase 2 involved an expert panel (n=4) review, think-aloud sessions with a small representative sample of CHES/MCHES (n=10), a pilot test (n=36), and classical test theory analyses to develop the initial version of the SMCI. Phase 3 included a field test of the SMCI with a random sample of CHES and MCHES (n=353), factor and Rasch analyses, and development of SMCI administration and interpretation guidelines.
Results: Six constructs adapted from the unified theory of acceptance and use of technology and the integrated behavioral model were identified for assessing social media competency: (1) Social Media Self-Efficacy, (2) Social Media Experience, (3) Effort Expectancy, (4) Performance Expectancy, (5) Facilitating Conditions, and (6) Social Influence. The initial item pool included 148 items. After the pilot test, 16 items were removed or revised because of low item discrimination (r.90), or based on feedback received from pilot participants. During the psychometric analysis of the field test data, 52 items were removed due to low discrimination, evidence of content redundancy, low R-squared value, or poor item infit or outfit. Psychometric analyses of the data revealed acceptable reliability evidence for the following scales: Social Media Self-Efficacy (alpha=.98, item reliability=.98, item separation=6.76), Social Media Experience (alpha=.98, item reliability=.98, item separation=6.24), Effort Expectancy(alpha =.74, item reliability=.95, item separation=4.15), Performance Expectancy (alpha =.81, item reliability=.99, item separation=10.09), Facilitating Conditions (alpha =.66, item reliability=.99, item separation=16.04), and Social Influence (alpha =.66, item reliability=.93, item separation=3.77). There was some evidence of local dependence among the scales, with several observed residual correlations above |.20|.
Conclusions: Through the multistage instrument-development process, sufficient reliability and validity evidence was collected in support of the purpose and intended use of the SMCI. The SMCI can be used to assess the readiness of health education specialists to effectively use social media for health promotion research and practice. Future research should explore associations across constructs within the SMCI and evaluate the ability of SMCI scores to predict social media use and performance among CHES and MCHES
Covariant gauge-natural conservation laws
When a gauge-natural invariant variational principle is assigned, to
determine {\em canonical} covariant conservation laws, the vertical part of
gauge-natural lifts of infinitesimal principal automorphisms -- defining
infinitesimal variations of sections of gauge-natural bundles -- must satisfy
generalized Jacobi equations for the gauge-natural invariant Lagrangian. {\em
Vice versa} all vertical parts of gauge-natural lifts of infinitesimal
principal automorphisms which are in the kernel of generalized Jacobi morphisms
are generators of canonical covariant currents and superpotentials. In
particular, only a few gauge-natural lifts can be considered as {\em canonical}
generators of covariant gauge-natural physical charges.Comment: 16 pages; presented at XXXVI Symposium on Math. Phys., Torun
09/06-12/06/04; the last paragraph of Section 3 has been reformulated, in
particular a mistake in the equation governing the vertical part of
gauge-natural lifts with respect to prolongations of principal connections
(appearing e.g. in the vertical superpotential) has been correcte
Economic considerations for moving beyond the Kato-Katz technique for diagnosing intestinal parasites as we move towards elimination
While the need for more sensitive diagnostics for intestinal helminths is well known, the cost of developing and implementing new tests is considered relatively high compared to the Kato-Katz technique. Here, we review the reported costs of performing the Kato-Katz technique. We also outline several economic arguments we believe highlight the need for further investment in alternative diagnostics, and considerations that should be made when comparing their costs. In our opinion, we highlight that, without new diagnostic methods, it will be difficult for policy makers to make the most cost-effective decisions and that the potentially higher unit costs of new methods can be outweighed by the long-term programmatic benefits they have (such as the ability to detect the interruption of transmission)
- …