34 research outputs found

    WDR62 Regulates Early Neural and Glial Progenitor Specification of Human Pluripotent Stem Cells

    Get PDF
    Mutations in WD40-repeat protein 62 (WDR62) are commonly associated with primary microcephaly and other developmental cortical malformations. We used human pluripotent stem cells (hPSC) to examine WDR62 function during human neural differentiation and model early stages of human corticogenesis. Neurospheres lacking WDR62 expression showed decreased expression of intermediate progenitor marker, TBR2, and also glial marker, S100β. In contrast, inhibition of c-Jun N-terminal kinase (JNK) signalling during hPSC neural differentiation induced upregulation of WDR62 with a corresponding increase in neural and glial progenitor markers, PAX6 and EAAT1, respectively. These findings may signify a role of WDR62 in specifying intermediate neural and glial progenitors during human pluripotent stem cell differentiation

    NXY-059, a Failed Stroke Neuroprotectant, Offers No Protection to Stem Cell-Derived Human Neurons

    Get PDF
    Background: Developing new medicines is a complex process where understanding the reasons for both failure and success takes us forward. One gap in our understanding of most candidate stroke drugs before clinical trial is whether they have a protective effect on human tissues. NXY-059 is a spin-trap reagent hypothesized to have activity against the damaging oxidative biology which accompanies ischemic stroke. Re-examination of the preclinical in vivo dataset for this agent in the wake of the failed SAINT-II RCT highlighted the presence of a range of biases leading to overestimation of the magnitude of NXY-059\u27s effects in laboratory animals. Therefore, NXY-059 seemed an ideal candidate to evaluate in human neural tissues to determine whether human tissue testing might improve screening efficiency. Materials and Methods: The aim of this randomized and blinded study was to assess the effects of NXY-059 on human stem cell-derived neurons in the presence of ischemia-like injury induced by oxygen glucose deprivation or oxidative stress induced by hydrogen peroxide or sodium nitroprusside. Results: In MTT assays of cell survival, lactate dehydrogenase assays of total cell death and terminal deoxynucleotidyl transferase dUTP nick end labeling staining of apoptotic-like cell death, NXY-059 at concentrations ranging from 1 µm to 1 mm was completely without activity. Conversely an antioxidant cocktail comprising 100 µm each of ascorbate, reduced glutathione, and dithiothreitol used as a positive control provided marked neuronal protection in these assays. Conclusion: These findings support our hypothesis that stroke drug screening in human neural tissues will be of value and provides an explanation for the failure of NXY-059 as a human stroke drug

    Hypothermia protects human neurons

    Get PDF
    Background and Aims: Hypothermia provides neuroprotection after cardiac arrest, hypoxic-ischemic encephalopathy, and in animal models of ischemic stroke. However, as drug development for stroke has been beset by translational failure, we sought additional evidence that hypothermia protects human neurons against ischemic injury. Methods: Human embryonic stem cells were cultured and differentiated to provide a source of neurons expressing β III tubulin, microtubule-associated protein 2, and the Neuronal Nuclei antigen. Oxygen deprivation, oxygen-glucose deprivation, and H2O2 -induced oxidative stress were used to induce relevant injury. Results: Hypothermia to 33°C protected these human neurons against H2O2 -induced oxidative stress reducing lactate dehydrogenase release and Terminal deoxynucleotidyl transferase dUTP nick end labeling-staining by 53% (P≤0·0001; 95% confidence interval 34·8-71·04) and 42% (P≤0·0001; 95% confidence interval 27·5-56·6), respectively, after 24 h in culture. Hypothermia provided similar protection against oxygen-glucose deprivation (42%, P≤0·001, 95% confidence interval 18·3-71·3 and 26%, P≤0·001; 95% confidence interval 12·4-52·2, respectively) but provided no protection against oxygen deprivation alone. Protection (21%) persisted against H2O2 -induced oxidative stress even when hypothermia was initiated six-hours after onset of injury (P≤0·05; 95% confidence interval 0·57-43·1). Conclusion: We conclude that hypothermia protects stem cell-derived human neurons against insults relevant to stroke over a clinically relevant time frame. Protection against H2O2 -induced injury and combined oxygen and glucose deprivation but not against oxygen deprivation alone suggests an interaction in which protection benefits from reduction in available glucose under some but not all circumstances

    Stem cell transplantation in traumatic spinal cord injury:a systematic review and meta-analysis of animal studies

    Get PDF
    Spinal cord injury (SCI) is a devastating condition that causes substantial morbidity and mortality and for which no treatments are available. Stem cells offer some promise in the restoration of neurological function. We used systematic review, meta-analysis, and meta-regression to study the impact of stem cell biology and experimental design on motor and sensory outcomes following stem cell treatments in animal models of SCI. One hundred and fifty-six publications using 45 different stem cell preparations met our prespecified inclusion criteria. Only one publication used autologous stem cells. Overall, allogeneic stem cell treatment appears to improve both motor (effect size, 27.2%; 95% Confidence Interval [CI], 25.0%-29.4%; 312 comparisons in 5,628 animals) and sensory (effect size, 26.3%; 95% CI, 7.9%-44.7%; 23 comparisons in 473 animals) outcome. For sensory outcome, most heterogeneity between experiments was accounted for by facets of stem cell biology. Differentiation before implantation and intravenous route of delivery favoured better outcome. Stem cell implantation did not appear to improve sensory outcome in female animals and appeared to be enhanced by isoflurane anaesthesia. Biological plausibility was supported by the presence of a dose-response relationship. For motor outcome, facets of stem cell biology had little detectable effect. Instead most heterogeneity could be explained by the experimental modelling and the outcome measure used. The location of injury, method of injury induction, and presence of immunosuppression all had an impact. Reporting of measures to reduce bias was higher than has been seen in other neuroscience domains but were still suboptimal. Motor outcomes studies that did not report the blinded assessment of outcome gave inflated estimates of efficacy. Extensive recent preclinical literature suggests that stem-cell-based therapies may offer promise, however the impact of compromised internal validity and publication bias mean that efficacy is likely to be somewhat lower than reported here

    Human Ischaemic Cascade Studies Using SH-SY5Y Cells: a Systematic Review and Meta-Analysis

    Get PDF
    Low translational yield for stroke may reflect the focus of discovery science on rodents rather than humans. Just how little is known about human neuronal ischaemic responses is confirmed by systematic review and meta-analysis revealing that data for the most commonly used SH-SY5Y human cells comprises only 84 papers. Oxygen-glucose deprivation, H2O2, hypoxia, glucose-deprivation and glutamate excitotoxicity yielded − 58, − 61, − 29, − 45 and − 49% injury, respectively, with a dose-response relationship found only for H2O2 injury (R2 = 29.29%, p I2 = 99.36%, df = 132, p R2 = 44.77%, p R2 = 28.64%, p R2 = 4.13%, p p 2O2 injury reported only improvement. In studies using glucose deprivation, intervention generally worsened outcome. There was insufficient data to rank individual interventions, but of the studies reporting greatest improvement (> 90% effect size), 7/13 were of herbal medicine constituents (24.85% of the intervention dataset). We conclude that surprisingly little is known of the human neuronal response to ischaemic injury, and that the large impact of methodology on outcome indicates that further model validation is required. Lack of evidence for randomisation, blinding or power analysis suggests that the intervention data is at substantial risk of bias

    Systematic review and meta-analysis of therapeutic hypothermia in animal models of spinal cord injury

    Get PDF
    Therapeutic hypothermia is a clinically useful neuroprotective therapy for cardiac arrest and neonatal hypoxic ischemic encephalopathy and may potentially be useful for the treatment of other neurological conditions including traumatic spinal cord injury (SCI). The pre-clinical studies evaluating the effectiveness of hypothermia in acute SCI broadly utilise either systemic hypothermia or cooling regional to the site of injury. The literature has not been uniformly positive with conflicting studies of varying quality, some performed decades previously.In this study, we systematically review and meta-analyse the literature to determine the efficacy of systemic and regional hypothermia in traumatic SCI, the experimental conditions influencing this efficacy, and the influence of study quality on outcome. Three databases were utilised; PubMed, ISI Web of Science and Embase. Our inclusion criteria consisted of the (i) reporting of efficacy of hypothermia on functional outcome (ii) number of animals and (iii) mean outcome and variance in each group.Systemic hypothermia improved behavioural outcomes by 24.5% (95% CI 10.2 to 38.8) and a similar magnitude of improvement was seen across a number of high quality studies. The overall behavioural improvement with regional hypothermia was 26.2%, but the variance was wide (95% CI -3.77 to 56.2). This result may reflect a preponderance of positive low quality data, although a preferential effect of hypothermia in ischaemic models of injury may explain some of the disparate data. Sufficient heterogeneity was present between studies of regional hypothermia to reveal a number of factors potentially influencing efficacy, including depth and duration of hypothermia, animal species, and neurobehavioural assessment. However, these factors could reflect the influence of earlier lower quality literature.Systemic hypothermia appears to be a promising potential method of treating acute SCI on the basis of meta-analysis of the pre-clinical literature and the results of high quality animal studies

    Human in vitro models of ischaemic stroke: a test bed for translation

    No full text
    © 2013 Dr. Ana AntonicOver 500 therapeutic agents have shown protection against ischaemic injury in animal models of stroke. However, efficacy has yet to be successfully translated into humans. The aim of this thesis is to examine the potential uses of stem cells to improve stroke therapy. Systematic review and meta-analysis of stem cell therapy for stroke in animals revealed that while there was an overall benefit, much of the heterogeneity in the data was accounted for by facets of stroke modelling rather than stem cell biology. Analysis of the data for spinal cord injury, which shares key pathophysiological mechanisms with stroke, revealed the same phenomenon. My conclusion from this work is that we do not fully understand what determines outcome in animals and should be cautious before applying this incomplete knowledge to humans. An alternative use of stem cells is to generate human neurons (and other central nervous system cell types) as a test-bed for drug screening. Analysis of the literature revealed that this hypothesis was untested and might provide the quickest route to practical use of stem cells. The experimental aims of this thesis were therefore to differentiate human embryonic stem cell (hESC) lines into neurons, develop models of ischaemic injury and test potential therapeutic agents. Induction of neuronal differentiation of hESCs was achieved by using the bone morphogenic inhibitor protein, Noggin. The resulting progenitors were then grown in the presence of EGF and bFGF until they formed neurospheres. Removal of the growth factors allowed the neurospheres to differentiate into neurons which were then cultured for 11 days prior to injury. Two methods of injury were used: (i) oxygen glucose deprivation (OGD) and (ii) H2O2 induced oxidative stress. Four potential therapeutic agents (hypothermia to 33°C, melatonin at the concentration range of 10nM to 1mM, VAS2870 at 10µM to 50µM and NXY-059 at 1µM to1mM) were tested and cell death was quantified using a lactate dehydrogenase (LDH) assay and TUNEL staining. Hypothermia reduced H2O2 and OGD induced cell death by 53% and 45% respectively at 24 hours. The neuroprotective effect of hypothermia diminished with time however, it was neuroprotective even when administered six hours after H2O2 induced cell death. 100µM Melatonin and 50µVAS2870 showed the highest neuroprotective effect and both drugs reduce H2O2 and OGD induced cell death by >60% at 24 hours. The neuroprotective effect of both melatonin and VAS2870 diminished with time and, unlike hypothermia, they had no effect on cell death when administered six hours after injury induction. NXY-059 provided no effect on neuronal cell survival in any of the injury models. This thesis provides the first investigation of protection of embryonic stem cell derived neurons by four different potential therapeutic agents. While hypothermia, melatonin and VAS2870 which are still under consideration for clinical trial show promising activity, NXY-059 which failed in the clinic, does not. These results suggest that human embryonic stem cells have a potential to be differentiated into different populations of functional, mature, synaptically active neurons, and could provide a useful drug screening tool

    Differential susceptibility of human neural progenitors and neurons to ischaemic injury

    No full text
    Background: Neuroprotection for stroke has shown great promise but has had little translational success. Developing drugs for humans logically requires human tissue evaluation. Human embryonic stem cell (hESC)-derived neuronal cultures at different developmental stages were subject to oxygen glucose deprivation (OGD) to determine how developing maturity altered response to ischemic injury. Methods: H9 hESCs were induced by Noggin to generate neural progenitors (NPs) and highly arbourised structurally complex neurons. They were both subjected to OGD or OGD with reoxygenation (OGD-R) for 1−6 h.Outcome was assessed by measures of cell death, survival and morphology. Results: NPs did not die after OGD but experienced progressive loss of metabolic activity. Highly arbourised neurons showed minimal cell death initially but 44 % and 78 % died after 4 and 6 h OGD. Metabolic dysfunction was greater in these more mature neurons (∼70 %) than in NPs and evident after 1 h OGD, before detection of neuronal death at 4 h. OGD-R salvaged metabolic activity but not cell death in mature neurons. In NPs there was little metabolic salvage and cell death was induced (50 % and 65 % at 4 and 6 h OGD-R, respectively). Conclusions: Highly arbourised neurons are more sensitive to ischaemic injury than NPs which did however develop marked vulnerability to prolonged injury with reoxygenation. These observations imply that therapeutic potential may be highly dependent of the developmental state of the neurons we aim to protect
    corecore