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Hypothermia protects human neurons

Ana Antonic1,2, Mirella Dottori3, Jessie Leung3, Kate Sidon1,2, Peter E. Batchelor2,
William Wilson5, Malcolm R. Macleod4, and David W. Howells1,2*

Background and Aims Hypothermia provides neuroprotection
after cardiac arrest, hypoxic-ischemic encephalopathy, and in
animal models of ischemic stroke. However, as drug develop-
ment for stroke has been beset by translational failure, we
sought additional evidence that hypothermia protects human
neurons against ischemic injury.
Methods Human embryonic stem cells were cultured and dif-
ferentiated to provide a source of neurons expressing β III
tubulin, microtubule-associated protein 2, and the Neuronal
Nuclei antigen. Oxygen deprivation, oxygen-glucose depriva-
tion, and H2O2-induced oxidative stress were used to induce
relevant injury.
Results Hypothermia to 33°C protected these human neurons
against H2O2-induced oxidative stress reducing lactate dehy-
drogenase release and Terminal deoxynucleotidyl transferase
dUTP nick end labeling-staining by 53% (P ≤ 0·0001; 95% con-
fidence interval 34·8–71·04) and 42% (P ≤ 0·0001; 95% confi-
dence interval 27·5–56·6), respectively, after 24 h in culture.
Hypothermia provided similar protection against oxygen-
glucose deprivation (42%, P ≤ 0·001, 95% confidence interval
18·3–71·3 and 26%, P ≤ 0·001; 95% confidence interval 12·4–
52·2, respectively) but provided no protection against oxygen
deprivation alone. Protection (21%) persisted against H2O2-
induced oxidative stress even when hypothermia was initiated
six-hours after onset of injury (P ≤ 0·05; 95% confidence inter-
val 0·57–43·1).
Conclusion We conclude that hypothermia protects stem cell-
derived human neurons against insults relevant to stroke over
a clinically relevant time frame. Protection against H2O2-
induced injury and combined oxygen and glucose deprivation
but not against oxygen deprivation alone suggests an interac-
tion in which protection benefits from reduction in available
glucose under some but not all circumstances.
Key words: brain, hypothermia, ischemic stroke, neuroprotection, stem
cells, treatment

Introduction

Obstruction of an artery supplying the brain initiates a cascade of

events leading ultimately to necrotic and apoptotic cell death.

With the most extreme perfusion deficits, survival is unlikely and

cell death is rapid. However, in areas adjacent to the ischemic core

(the ischemic penumbra), residual blood flow can preserve tissue

vitality for a limited time until the obstruction resolves sponta-

neously or is removed by thrombolysis (1,2). After these acute

events delayed neuronal death may progress for up to three-days

(3). Both these phenomena (the penumbra during ischemia and

delayed neural injury after ischemia) provide targets for treat-

ment and in animal models of ischemic stroke over 500 ‘neuro-

protective’ treatment strategies reported improved outcome.

However, none have proved robustly effective in randomized con-

trolled clinical trials (4). Importantly with the exception of thera-

peutic hypothermia (5), clinical trials of neuroprotection for

stroke have largely been abandoned (http://www.clinicaltrials

.gov).

The reasons for this translational failure have been hotly

debated. Contamination of the preclinical data set by falsely posi-

tive results influenced by bias and lack of statistical power offer

some explanation (6–8). The molecular targets of therapy may be

present in rodents but not in man (9), either because of differ-

ences in genetic background (10) or because evolution of the

ischemic cascade might proceed at a different pace in different

species (11–13). Additionally, laboratory and clinical thromboly-

sis experiments show similar, and unfortunately short, windows

of opportunity (2,14), which are frequently unachievable in most

trials of neuroprotection (15,16). Targeting single components of

the ischemic cascade might also limit our chances of success

(17,18), but combinatorial pharmacotherapy therapy brings its

own challenges (19).

The preclinical data set for therapeutic hypothermia is large

(3353 animals) and demonstrates substantial and consistent effi-

cacy, with only modest effects of publication bias and failure to

randomize or blind (20). Hypothermia influences multiple

molecular targets (21,22) and provides benefit over a wide range

of times to treatment in animals (20). Clinically, evidence of a

relationship between body temperature and outcome after

human stroke (23–25), together with the proven neuroprotective

benefit of hypothermia in adults with global ischemia after

cardiac arrest (26,27) and neonates with hypoxic-ischemic

encephalopathy (28,29), suggest that the targets that provide

benefit in animal models of stroke will also be present in human

stroke. However, the absence of clear therapeutic benefit in trau-

matic brain injury (30), which accrues damage similarly to stroke

(31), suggests caution should be taken. A Cochrane systematic

review of stroke patients treated with physical cooling devices

suggests there may be a trend toward improvement. However, in

most cases, treatment was initiated (8–12 h) when penumbral

tissue, the main putative target, may no longer be present. Overall,

the analysis supports the view that we still have insufficient data
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(32) with trials too small to allow firm conclusions to be made

about the efficacy of hypothermia in stroke patients (33–35).

In this report, we show that hypothermia (33°C) protects

human stem-cell derived neurons from oxidative stress induced

by hydrogen peroxide and from oxygen-glucose deprivation but

not hypoxia alone. Importantly, protection against oxidative

stress is observed at later times (six-hours) than obtained under

oxygen-glucose deprivation. The results were replicated in three

independent series of experiments employing randomization and

blinding of operator-dependent, outcome analyses.

Methods

Human embryonic stem cell (hESC) Culture
Experiments with these cells were carried out in accordance with

the guidelines and regulations of the National Health and Medical

Research Council and with the approval of the Austin Health

Human Research Ethics Committee (Approval number H2008/

03194) and University of Melbourne Human Research Ethics

Committee (Approval number 0605017).

H9 (WA-09, WiCell, Madison, Wisconsin, USA), human

embryonic stem cells (hESC), were cultured on mitomycin-

C treated mouse embryonic fibroblasts (MEFs) in hESC

medium consisting of high-glucose Dulbecco’s modified

Eagle’s minimal essential medium (DMEM) without sodium

pyruvate, supplemented with insulin/transferrin/selenium 1%,

β-mercaptoethanol 0·1 mM, nonessential amino acids (NEAAs)

1%, glutamine 2 mM, penicillin 25 U/ml, streptomycin 25 μg/ml

(all from Invitrogen, Victoria, Australia) and fetal calf serum

(FCS) 20% (HyClone, Australia) or on mitomycin-C treated

human foreskin fibroblasts (HFF; ATCC, CRL-2097) in KSR

media consisting of DMEM/nutrient mixture F-12, supplemented

with β-mercaptoethanol 0·1 mM, NEAAs 1%, glutamine 2 mM,

penicillin 25 U/ml, streptomycin 25 μg/ml, and knockout serum

replacement 20% (all from Invitrogen). All cells were cultured at

37°C in 5% CO2. Colonies were mechanically dissected every

seven-days and transferred to freshly prepared MEFs or HFFs.

Media was changed every second day.

Neuronal differentiation and growth
Neuronal differentiation was achieved using the noggin induction

method described for mouse neurospheres (36) as adapted by

Dottori for human neurospheres (37).The colonies were main-

tained (37°C, 5% CO2) in hESC medium supplemented with

500 ng/ml of Noggin (6057-NG, R&D systems, Australia) for 14

days with the media and Noggin replaced every second day.

At this point, the colonies were again mechanically dissociated,

but at this time the central (differentiated) part of the colony was

also cut into smaller pieces using a 26-gauge needle. The pieces

were transferred to individual wells in a low adherent 96-well

plate containing Neural Basal Media (NBM) that contains Neu-

robasal A (10888-022, Invitrogen) supplemented with 2% B27

(17504-044, Invitrogen), 1% Insulin Transferrin Selenium-A

(51500-056, Invitrogen), 1% N2 (17502-048, Invitrogen), 2 mM

glutamine, 0·5% Penicillin-Streptomycin Solution (15070-063,

Invitrogen), 20 ng/ml human recombinant epidermal growth

factor (EGF) (PHG0314, Invitrogen) and 20 ng/ml human

recombinant basic fibroblast growth factor (bFGF) (13256-029,

Invitrogen). Media was changed every two- to three-days to allow

neurosphere formation over two-weeks.

In order to facilitate neuronal differentiation, neurospheres

were again separated into smaller pieces under a dissection micro-

scope with three to four pieces transferred to each well of a

96-well plate [precoated with poly-D-lysine (10 μg/ml) and

mouse laminin (5 μg/ml)]. The cells were then grown for 11 days

(with media changed every two-days) in NBM lacking

growth factors prior to induction of injury and assessment of

hypothermia.

Injury and hypothermia induction
On the day of experiments, the medium was changed to

NBM+N2 containing a B27 preparation lacking the usual antioxi-

dants (10889-038, Invitrogen) (NBM-AO) to eliminate their con-

founding effects.

Three different injury models were used to assess the effect of

hypothermia on these cells. Oxygen deprivation was induced by

placing the cells into a hypoxic chamber flushed with nitrogen for

20 min and maintained at the appropriate temperature (33°C or

37°C) for four-hours inside a standard 5% CO2 incubator. Culture

supernatant was removed after this four-hour period and stored

at 4°C until analysed for lactate dehydrogenase activity (LDH).

The media was replaced with fresh NBM-AO, and the cells were

incubated for a further 20 h at the appropriate temperature (33°C

or 37°C) before again measuring LDH. For combined oxygen and

glucose deprivation (ODG), 25 mM 2-deoxy-D-glucose was

added to NBM-AO medium and equilibrated for 30 min at room

temperature before the initial media change as described above.

The third injury model used was oxidative stress induced by

adding 50 μM of fresh H2O2 (H1009, Sigma-Aldrich, Australia) to

the NBM-AO for four-hours (33°C or 37°C, 5% CO2) when LDH

was measured, and NBM-AO without H2O2 was returned to the

culture, which was maintained for a further 20 h before again

measuring LDH. To examine whether the effects of injury con-

tinued beyond four-hours, the media containing the above stress-

ors was removed and replaced with fresh growth factor negative

NBM before resampling for LDH activity and assessment of

apoptotic cell death by terminal deoxynucleotidyl transferase

dUTP nick end labelling (TUNEL) staining at 24 h.

To evaluate the effects of hypothermia over time from the

induction of injury, incubation at 33°C was started immediately,

or one-, or three-, or six-hours after induction of injury and

maintained until a total of 24 h in each of the models.

LDH, a marker of total cell death and TUNEL staining and a

marker of DNA damage typical of apoptosis, were performed

according to the kit manufacturer’s instructions (1164479001 and

11684795910, respectively, Roche, Australia). For LDH assays,

three control measurements were made in addition to the test

sample measurements. The cell culture medium without cells was

assayed to assess background activity. Uninjured cells were

assayed to detect activity due to basal cell death, and maximum

possible cell death (100%) was detected by measuring LDH activ-

ity of lysed cells.

Research A. Antonic et al.

© 2014 The Authors. International Journal of Stroke published by John Wiley & Sons Ltd
on behalf of World Stroke Organization

2 Vol ••, •• 2014, ••–••



Statistical analysis
Each experiment was repeated three times. To avoid systematic

effects on individual cultures because of the arrangement of wells

in the tissue culture plates, control and injury cultures were dis-

tributed across the plates at random. Complete experiments con-

tained within each tissue culture plate were then placed

alternatively at either 37OC or 33OC. To minimize the potential

impact of systematic bias, before counting of TUNEL positive

cells, wells were imaged and the images recoded independently

before quantitation. No additional blinding was performed for

the machine-read LDH assay process. Within experiments, each

comparison was performed at least in triplicate and the mean of

these values taken forward into group comparisons. Two-way

analysis of variance was performed, followed by post hoc Dun-

nett’s multiple comparison test with significance set at P < 0·05

using spss (Statistics 20, IBM, Armonk, NY, USA). All values are

presented as mean ± standard error of the mean.

Results

The method of stem cell culture and neuronal differentiation

employed in this study gives rise to neurons with a mature pro-

jecting phenotype (Fig. 1) that express the markers β III tubulin,

microtubule-associated protein 2 (MAP2), and neural nuclei

(NeuN). β III tubulin positive cells comprise 70·4% ± 1·8 of the

cells present before injury (obtained by calculating the ratio of

4’,6-diamidino-2-phenylindole dihydrochloride (DAPI) and β III

tubulin cells from 10 fields per well in three independent experi-

ments). Dose response assays were performed to establish injury

assay conditions (hypoxia, hypoxia plus glucose deprivation, and

oxidative stress) that reproducibly induced 30–40% of maximal

signal at four-hours to ensure that values lay within the working

range of the assays used. In control cultures without injury, hypo-

thermia had no effect on the basal level of cell death measured by

LDH release at either 4 or 24 h (Figs 2–5).

H2O2-induced oxidative stress increased LDH-detected cell

death 3·8-fold after four-hours. Removal of the H2O2 by replacing

the culture media at four-hours dramatically slowed but did not

halt the H2O2-induced injury (Fig. 2a,b). Hypothermia to 33°C

reduced H2O2-induced cell death at four-hours by 45%

[P ≤ 0·0001; 95% confidence interval (CI) 27·5–62·6] (after cor-

recting for basal injury in controls) (Fig. 2a). Hypothermia effec-

tively abolished (92% reduction) (P ≤ 0·001; 95% CI 45·3–131·3)

the delayed injury that continued to accrue between removal of

H2O2 at four-hours and completion of the experiment at 24 h

(Fig. 2b). The net effect at 24 h was a reduction of LDH release of

53% (P ≤ 0·0001; 95% CI 34·8–71·04) (Fig. 2c). H2O2-induced

oxidative stress increased TUNEL-detected apoptotic cell death

2·9-fold after 24 h, with 22% of cells present in culture killed by

this mechanism upon introduction of H2O2. Hypothermia pre-

vented 42% (P ≤ 0·0001; 95% CI 27·5–56·6) of this death (after

correcting for basal injury in the control) (Fig. 2d).

Oxygen deprivation alone increased LDH-detected cell death

approximately twofold after four-hours. Restoring the culture to a

normal air/5% CO2 incubator and replacing the culture media at

four-hours again slowed but did not completely halt the oxygen

depletion induced injury (Fig. 3a,b). Hypothermia to 33°C had

no discernible effect on oxygen depletion-induced cell death at

either 4 or 24 h by either LDH or TUNEL assays (Fig. 3a–d).

Combined OGD caused greater injury, increasing LDH-

detected cell death 3·9-fold after four-hours. This death continued

at a slower rate on restoration of normal culture conditions

(Fig. 4a,b). Hypothermia to 33°C reduced OGD induced cell

death at four-hours by 37% (P ≤ 0·006; 95% CI 6·8–44·8) (after

correcting for basal injury in controls) (Fig. 4a). Hypothermia

reduced the delayed injury that occurred between removal of

OGD at four-hours and completion of the experiment at 24 h by

80% (P ≤ 0·015; 95% CI 13·8–146·8) (Fig. 4b). The net effect at

24 h was a reduction of LDH release of 42% (P ≤ 0·001; 95% CI

18·3–71·3) (Fig. 4c). TUNEL staining for DNA damage typical of

apoptosis at 24 h suggested that 22% of cell death occurred by this

mechanism and that hypothermia prevented 26% (P ≤ 0·001;

95% CI 12·4–52·2) of this death (after correcting for basal injury

in the control) (Fig. 4d).

To confirm these observations, the H2O2 and OGD experiments

were repeated as before with hypothermia throughout the period

of exposure to injury (from 0 h) and with initiation of hypother-

mia delayed for one-, three-, or six-hours, with outcome recorded

as the total % of LDH release at 24 h. As before hypothermia had

no impact on cell death in control cultures but when initiated at 0,

one-, three-, or six-hours protected against H2O2 toxicity by 52%

(P ≤ 0·0001; 95% CI 29·8–73·5), 43% (P ≤ 0·0001; 95% CI 20·9–

64·5), 34% (P ≤ 0·001; 95% CI 12·1–55·8), and 21% (P ≤ 0·05;

Fig. 1 β III tubulin positive human neurons after 11 days in culture with
nuclei counterstained with 4’,6-diamidino-2-phenylindole dihydrochloride
(DAPI).
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95% CI 0·57–43·1) (Fig. 5a), respectively, and against OGD-

induced injury by 45% (P ≤ 0·0004; 95% CI 18·5–71·9), 30%

(P ≤ 0·023; 95% CI 3·4–56·9), 27% (P ≤ 0·041; 95% CI 0·84–54·3),

and 4% (P = 0·99; 95% CI −23·02 to 30·4) (Fig. 5b), respectively.

Discussion

This study provides the first description of protection of embry-

onic stem cell-derived human neurons by hypothermia. This is

broadly consistent with data from ∼20 publications (Table 1) that

have examined the effects of hypothermia in tissues cultured from

rats, mice, gerbils, guinea pigs, and three papers utilizing human

teratoma lines (40–50,52,54–56). In this literature, glutamate

release (40), calcium accumulation (38), and glucose utilization

(45) are reduced while membrane potential (41,51) and cel-

lular morphology are restored (49). These are consistent with

reduced injury and cell death (39,44–46,48) measured by

LDH release (40,45), propidium iodide uptake (46,48), 3-(4,5-

Fig. 2 The effects of hypothermia on H2O2-induced cell death. Hypothermia reduces LDH detected cell death by 45% at four-hours (a) and effectively
abolished (92% reduction) the delayed injury (b). The net effect at 24 h was reduction of 53% (c). H2O2-induced oxidative stress increased TUNEL-detected
apoptotic cell death 2.9-fold after 24 h and hypothermia prevents 42% of this death (d). Statistical significance detected at *P ≤ 0·05, **P ≤ 0·01,
#P ≤ 0·0005, and ##P ≤ 0·0001. Data presented as mean ± SEM.

Fig. 3 The effects of hypothermia on oxygen deprivation induced cell death. Hypothermia has no beneficial effect at four hours (a), 4–20 h (b), or in the
combined 24 h LDH measurement of cell death (c) as well as on apoptotic cell death detected by TUNEL staining at 24 h (d). NS = not significant.
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dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)

staining (54), caspase activity (44), and other immunohisto-

chemical techniques (42,50,52,53,57).

Hypothermia significantly protected embryonic stem cell-

derived human neurons against oxidative stress and from

hypoxia when glucose concentration was reduced but was inef-

fective against hypoxia alone. Neuroprotective effects were seen

with delays in initiation of hypothermia of up to six-hours, with

the magnitude of benefit progressively decreasing as the time to

hypothermia initiation increased. In our preparations protection

against apoptosis was also detected, consistent with data from

mouse neuronal cultures (44) and focal cerebral ischemia

experiments in animals (58) showing that mild hypothermia

attenuates DNA damage typical of apoptotic neuronal cell

death. However, the difference between degree of injury detected

at 24 h by LDH and TUNEL assays suggests cell death is also

occurring in the cultures by nonapoptotic mechanisms such as

necrosis.

Fig. 4 The effects of hypothermia on oxygen glucose deprivation (OGD)-induced cell death. Hypothermia reduced OGD-induced cell death at four hours
by 37% (a). Hypothermia reduced the delayed injury that occurred between removal of OGD at four hours and completion of the experiment at 24 h
by 80% (b). The net effect at 24 h was a reduction of LDH release of 42% (c). TUNEL staining for apoptosis at 24 h suggested that 22% of cell death
occurred by this mechanism and that hypothermia prevented 26% of this death (d). *P ≤ 0·05, #P ≤ 0·0005, and ##P ≤ 0·0001. Data presented as
mean ± SEM.

Fig. 5 Time-dependent effects of hypothermia on H2O2 and OGD-induced cell death. Hypothermia reduces LDH-detected cell death induced with H2O2

by 52%, 43%, 34%, and 21% (a) and OGD-induced injury by 45%, 30%, 27%, and 4% when started at 0, one-, three-, and six-hours (b), respectively.
*P ≤ 0·05, **P ≤ 0·01, #P ≤ 0·0005, and ##P ≤ 0·0001. Data presented as mean ± SEM.
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There are a number of studies using NT2-N neurons in similar

experiments with conflicting data evident. Although one study

reports essentially the same result as here (54), another reports

that hypothermia protects against the effects of oxygen restriction

alone (59). The reasons for these differences are unclear but

suggest differential expression of the metabolic or signaling

machinery involved in ischemic injury. NT2-N cells are derived

from the human NTera2 embryonal carcinoma stem cell line (60)

and are known to differ substantially in their broad pattern of

gene expression when compared with different hESC lines (61)

and therefore may not be the most appropriate models to study

human disease (62).

Intriguingly, hypothermia had no effect on the basal level of cell

death in the uninjured controls. The contrasting response to dif-

ferent injury models, lack of effect on culture dependent cell

death, and different behaviors to experiments reported in other

cell lines suggests interaction specifically in the processes of isch-

emic injury rather than cell death itself and requires further study.

These differences also do not appear to be consistent with

hypothermia-inducing protection simply by slowing overall

metabolic activity (63) but could still be consistent with decreas-

ing the cerebral metabolic rates of glucose and oxygen consump-

tion (64) and slowing adenosine triphosphate (ATP) breakdown

(65).

It is not clear how the time frame of protection of human

neurons in vitro will be predictive of time frame in stroke.

However, detection of protection against oxidative stress even

after cessation of injury offers hope for the clinical setting. This

may be particularly relevant if reperfusion injury (66–68) acts to

lessen the potential benefit afforded by thrombolysis or throm-

bectomy and suggests this may be an important target for clinical

trials of hypothermia. The data are certainly consistent with the

recent observation that mild hypothermia reduces the deleterious

side effects of tissue plasminogen activator treatment after throm-

boembolic stroke in rats (69). Different time frames of benefit via

different mechanisms for a single therapeutic approach suggest

we still have much to learn about the details of the ischemic

cascade and the therapeutic opportunities it might offer. The

window of opportunity detected here in human neurons in vitro

is certainly consistent with a wide window in rodent models of

stroke (20) and with the planned six-hour window for

EuroHYP-1 (70).

As in most experiments, our data and its interpretation have

limits. The current experiments have been performed in cells that

exhibit a branching phenotype expressing β III tubulin. However,

these cells have spent only 11 days in culture and thus might be

better viewed as immature. It is not yet clear whether these cells

can stand in for a 60-year-old neuron from a typical stroke victim.

However, it seems reasonable to believe that we can devise strat-

egies to rapidly and repeatedly stress them much as a car manu-

facture would stress test a car. Nevertheless, we might see different

effects when cultures have matured neurochemically. Moreover,

clinically relevant protection might be dependent on effects on

neurotransmission itself (71) or regulation of edema (72). Fur-

thermore, beneficial effects might be restricted to specific neuro-

chemical profiles present at high abundance in our culture but

not in areas of the brain affected by most common forms of

human stroke. Another limitation of the current experiments was

ethical approval to study only one hESC cell line. It will be impor-

tant to confirm these observations in other hESC lines, and when

the technology is more mature (73,74) to examine whether the

same effects are seen in induced pluripotent stem cells (iPSCs)

from patients with stroke or relevant defects of oxidative metabo-

lism such as seen in inborn errors of mitochondrial function.

Conclusion

This study provides the first description of protection of embry-

onic stem cell derived human neurons by hypothermia. If hypo-

thermia does have a predilection for ischemic processes, this

offers hope for use of hypothermia to treat ischemic stroke and

spinal cord injuries where cord compression results in secondary

ischemia (75). This study also provides proof of principle that

human neurons derived from hESCs can be used to screen new

drugs for therapeutic effect. For screening large chemical libraries,

this will be more specific than screening in cell lines from other

species, and more cost-effective than initial screening in animal

models of stroke.
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