95 research outputs found

    Centrality of Trees for Capacitated k-Center

    Full text link
    There is a large discrepancy in our understanding of uncapacitated and capacitated versions of network location problems. This is perhaps best illustrated by the classical k-center problem: there is a simple tight 2-approximation algorithm for the uncapacitated version whereas the first constant factor approximation algorithm for the general version with capacities was only recently obtained by using an intricate rounding algorithm that achieves an approximation guarantee in the hundreds. Our paper aims to bridge this discrepancy. For the capacitated k-center problem, we give a simple algorithm with a clean analysis that allows us to prove an approximation guarantee of 9. It uses the standard LP relaxation and comes close to settling the integrality gap (after necessary preprocessing), which is narrowed down to either 7, 8 or 9. The algorithm proceeds by first reducing to special tree instances, and then solves such instances optimally. Our concept of tree instances is quite versatile, and applies to natural variants of the capacitated k-center problem for which we also obtain improved algorithms. Finally, we give evidence to show that more powerful preprocessing could lead to better algorithms, by giving an approximation algorithm that beats the integrality gap for instances where all non-zero capacities are uniform.Comment: 21 pages, 2 figure

    LP-Based Algorithms for Capacitated Facility Location

    Full text link
    Linear programming has played a key role in the study of algorithms for combinatorial optimization problems. In the field of approximation algorithms, this is well illustrated by the uncapacitated facility location problem. A variety of algorithmic methodologies, such as LP-rounding and primal-dual method, have been applied to and evolved from algorithms for this problem. Unfortunately, this collection of powerful algorithmic techniques had not yet been applicable to the more general capacitated facility location problem. In fact, all of the known algorithms with good performance guarantees were based on a single technique, local search, and no linear programming relaxation was known to efficiently approximate the problem. In this paper, we present a linear programming relaxation with constant integrality gap for capacitated facility location. We demonstrate that the fundamental theories of multi-commodity flows and matchings provide key insights that lead to the strong relaxation. Our algorithmic proof of integrality gap is obtained by finally accessing the rich toolbox of LP-based methodologies: we present a constant factor approximation algorithm based on LP-rounding.Comment: 25 pages, 6 figures; minor revision

    Improving Christofides' Algorithm for the s-t Path TSP

    Full text link
    We present a deterministic (1+sqrt(5))/2-approximation algorithm for the s-t path TSP for an arbitrary metric. Given a symmetric metric cost on n vertices including two prespecified endpoints, the problem is to find a shortest Hamiltonian path between the two endpoints; Hoogeveen showed that the natural variant of Christofides' algorithm is a 5/3-approximation algorithm for this problem, and this asymptotically tight bound in fact has been the best approximation ratio known until now. We modify this algorithm so that it chooses the initial spanning tree based on an optimal solution to the Held-Karp relaxation rather than a minimum spanning tree; we prove this simple but crucial modification leads to an improved approximation ratio, surpassing the 20-year-old barrier set by the natural Christofides' algorithm variant. Our algorithm also proves an upper bound of (1+sqrt(5))/2 on the integrality gap of the path-variant Held-Karp relaxation. The techniques devised in this paper can be applied to other optimization problems as well: these applications include improved approximation algorithms and improved LP integrality gap upper bounds for the prize-collecting s-t path problem and the unit-weight graphical metric s-t path TSP.Comment: 31 pages, 5 figure

    Dynamic Facility Location via Exponential Clocks

    Full text link
    The \emph{dynamic facility location problem} is a generalization of the classic facility location problem proposed by Eisenstat, Mathieu, and Schabanel to model the dynamics of evolving social/infrastructure networks. The generalization lies in that the distance metric between clients and facilities changes over time. This leads to a trade-off between optimizing the classic objective function and the "stability" of the solution: there is a switching cost charged every time a client changes the facility to which it is connected. While the standard linear program (LP) relaxation for the classic problem naturally extends to this problem, traditional LP-rounding techniques do not, as they are often sensitive to small changes in the metric resulting in frequent switches. We present a new LP-rounding algorithm for facility location problems, which yields the first constant approximation algorithm for the dynamic facility location problem. Our algorithm installs competing exponential clocks on the clients and facilities, and connect every client by the path that repeatedly follows the smallest clock in the neighborhood. The use of exponential clocks gives rise to several properties that distinguish our approach from previous LP-roundings for facility location problems. In particular, we use \emph{no clustering} and we allow clients to connect through paths of \emph{arbitrary lengths}. In fact, the clustering-free nature of our algorithm is crucial for applying our LP-rounding approach to the dynamic problem

    Making Three out of Two: Three-Way Online Correlated Selection

    Get PDF
    Two-way online correlated selection (two-way OCS) is an online algorithm that, at each timestep, takes a pair of elements from the ground set and irrevocably chooses one of the two elements, while ensuring negative correlation in the algorithm\u27s choices. Whilst OCS was initially invented by Fahrbach, Huang, Tao, and Zadimoghaddam to break a natural long-standing barrier in the edge-weighted online bipartite matching problem, it is an interesting technique on its own due to its capability of introducing a powerful algorithmic tool, namely negative correlation, to online algorithms. As such, Fahrbach et al. posed two tantalizing open questions in their paper, one of which was the following: Can we obtain n-way OCS for n > 2, in which the algorithm can be given n > 2 elements to choose from at each timestep? In this paper, we affirmatively answer this open question by presenting a three-way OCS. Our algorithm uses two-way OCS as its building block and is simple to describe; however, as it internally runs two instances of two-way OCS, one of which is fed with the output of the other, the final output probability distribution becomes highly elusive. We tackle this difficulty by approximating the output distribution of OCS by a flat, less correlated function and using it as a safe "surrogate" of the real distribution. Our three-way OCS also yields a 0.5093-competitive algorithm for edge-weighted online matching, demonstrating its usefulness

    Constant-Factor Approximation Algorithms for the Parity-Constrained Facility Location Problem

    Get PDF
    Facility location is a prominent optimization problem that has inspired a large quantity of both theoretical and practical studies in combinatorial optimization. Although the problem has been investigated under various settings reflecting typical structures within the optimization problems of practical interest, little is known on how the problem behaves in conjunction with parity constraints. This shortfall of understanding was rather discouraging when we consider the central role of parity in the field of combinatorics. In this paper, we present the first constant-factor approximation algorithm for the facility location problem with parity constraints. We are given as the input a metric on a set of facilities and clients, the opening cost of each facility, and the parity requirement - odd, even, or unconstrained - of every facility in this problem. The objective is to open a subset of facilities and assign every client to an open facility so as to minimize the sum of the total opening costs and the assignment distances, but subject to the condition that the number of clients assigned to each open facility must have the same parity as its requirement. Although the unconstrained facility location problem as a relaxation for this parity-constrained generalization has unbounded gap, we demonstrate that it yields a structured solution whose parity violation can be corrected at small cost. This correction is prescribed by a T-join on an auxiliary graph constructed by the algorithm. This auxiliary graph does not satisfy the triangle inequality, but we show that a carefully chosen set of shortcutting operations leads to a cheap and sparse T-join. Finally, we bound the correction cost by exhibiting a combinatorial multi-step construction of an upper bound
    • …
    corecore