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Abstract
Two-way online correlated selection (two-way OCS) is an online algorithm that, at each timestep,
takes a pair of elements from the ground set and irrevocably chooses one of the two elements,
while ensuring negative correlation in the algorithm’s choices. Whilst OCS was initially invented
by Fahrbach, Huang, Tao, and Zadimoghaddam to break a natural long-standing barrier in the
edge-weighted online bipartite matching problem, it is an interesting technique on its own due to
its capability of introducing a powerful algorithmic tool, namely negative correlation, to online
algorithms. As such, Fahrbach et al. posed two tantalizing open questions in their paper, one of
which was the following: Can we obtain n-way OCS for n > 2, in which the algorithm can be given
n > 2 elements to choose from at each timestep?

In this paper, we affirmatively answer this open question by presenting a three-way OCS. Our
algorithm uses two-way OCS as its building block and is simple to describe; however, as it internally
runs two instances of two-way OCS, one of which is fed with the output of the other, the final output
probability distribution becomes highly elusive. We tackle this difficulty by approximating the
output distribution of OCS by a flat, less correlated function and using it as a safe “surrogate” of the
real distribution. Our three-way OCS also yields a 0.5093-competitive algorithm for edge-weighted
online matching, demonstrating its usefulness.
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1 Introduction

Online correlated selection (OCS) is an online algorithm that, at each timestep, takes a subset
of the ground set as the input and irrevocably chooses a single element from the subset. When
every input subset has cardinality n, we call it n-way OCS in particular. The aim of online
correlated selection is to ensure a certain level of negative correlation in the choice made
by the algorithm. For example, suppose we run a two-way OCS and afterwards specify m

timesteps that contained some common element. The probability that this element was never
chosen would be (1/2)m if the algorithm made independent and uniformly random choices;
the goal of two-way OCS is to reduce this probability by introducing negative correlations.
(See Definition 4 for a full definition that quantifies the desired amount of reduction.)
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OCS was first invented by Fahrbach, Huang, Tao, and Zadimoghaddam [10] to attack the
edge-weighted online bipartite matching problem. Negative correlation has proven to be a
very powerful technique in approximation algorithms design (see, e.g., [34, 2, 7] for a limited
list of examples); this suggests that OCS as well bears high potential as a general tool in
online algorithms design rather than as a specialized technique to solve a particular problem.
This opportunity was also observed by the breakthrough paper of Fahrbach et al. [10] and
recently exemplified by Huang, Zhang, and Zhang [23], who devised a certain variant of OCS
called panoramic OCS to solve the AdWords problem with general bids.

In light of such value of OCS as an algorithmic tool, Fahrbach et al. [10] raised in their
paper two follow-up questions that arise quite naturally: Can we improve the performance
of their two-way OCS? Can we obtain an n-way OCS for n > 2? This paper affirmatively
answers the latter question. In this paper, we present a simple three-way OCS and analyze
its performance. We will also show that our three-way OCS can be used to improve the
previous competitive ratio of 0.5086 due to Fahrbach et al. to give a new 0.5093-competitive
algorithm for edge-weighted online bipartite matching.

In fact, the construction itself of our three-way OCS is easy to describe. It internally
executes two instances of two-way OCS. Upon arrival of a triple, we choose two of the three
elements uniformly at random, and let the first two-way OCS choose one of them. We then
pass its output, along with the element that was left out of the first OCS, to the second OCS.
The second OCS chooses one of these two elements; this choice becomes the final output of
this timestep.

In Section 3, we analyze the performance of our three-way OCS for a special case first:
we bound the probability that a certain element, say u, is never chosen for k consecutive
timesteps whose triples contain u. It is not that we require these k timesteps to be consecutive
in the original input: they need to be consecutive in the subsequence of timesteps on which
u appeared in the triple. By the definition of two-way γ-OCS, the probability that the
second two-way OCS never chooses u is no greater than (1/2)j(1 − γ)max(j−1,0) for some
constant γ, where j is the number of times u was passed to the second OCS during those k

timesteps. Since this bound depends only on j, the question really reduces to determining
(the probability distribution of) j.

In order for u to be passed to the second OCS, it needs to be either left out of the first
OCS or output by it. It is easy to count how many times u is left out of the first OCS: this
follows a binomial distribution. Therefore, the challenge is in counting the number of times u

is output by the first OCS. Unfortunately, its probability distribution highly depends on the
actual input to the first OCS, rather than the number of times u is shown to the first OCS.
Nonetheless, the following observation is crucial in coping with this difficulty: the probability
distribution of the number of times Fahrbach et al.’s two-way OCS chooses u is a unimodal
symmetric distribution. Recall that the probability that the second OCS never chooses u is
bounded by (1/2)j(1 − γ)max(j−1,0), which is “nearly” convex. Therefore, even though we
cannot exactly calculate the probability distribution of j without the full knowledge of the
input, the above observation implies that we can instead use a “flatter” unimodal symmetric
distribution in lieu of the actual distribution of j. Thanks to the near-convexity, this would
give a valid upper bound on the probability. We formalize what a “flatter” distribution is by
defining the notion of central dominance as follows.

▶ Definition 1 (Central Dominance). Given two discrete symmetric probability distributions
D1 and D2 on {0, 1, · · · , x} whose probability mass functions are p1 and p2, respectively,
we say D1 centrally dominates D2 if there exists z ∈ [0, x

2 ] such that, for any integer
y ∈ [ x

2 − z, x
2 + z], p1(y) ≥ p2(y), and for any integer y ∈ [0, x

2 − z) ∪ ( x
2 + z, x], p1(y) ≤ p2(y).
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We then construct our “surrogate” distribution that is centrally dominated by any possible
probability distribution of j. This distribution depends only on the number of times the first
OCS is given u. It is therefore much more amenable and allows us to obtain a bound on the
probability that our three-way OCS never chooses u from the given consecutive triples.

In Section 4, we generalize this bound to the non-consecutive case, i.e., a disjoint set of
consecutive subsequences of timesteps containing u. To obtain this bound, we perform a set
of surgical operations that modify the input to the first OCS, which are designed to reduce
negative correlation. These operations are inspired by those of Fahrbach et al. [10] that
they used to obtain a similar generalization. In our case, however, we face a new obstacle:
previously, it sufficed to bound only the probability that the two-way OCS never chooses a
given element, since the output of that OCS was the final output. Our final output on the
other hand is determined by the second OCS, and if our modification changes the output
distribution of the first OCS, this may affect the output of the second OCS in an obscure way.
We prove that a set of careful surgical operations can remove all correlations while ensuring
that the bound is not affected. Once the correlations are removed, the general-case bound
can be simply given as the product of our bounds from Section 3 for single subsequences.

▶ Theorem 2 (simplified). Consider a set of m disjoint consecutive subsequences of timesteps
whose triples contain some element u of the ground set. Let k1, . . . , km be the lengths of
these subsequences. The probability that our three-way OCS never chooses u from these m

subsequences is at most

m∏
i=1

[(
2
3

)ki

(1 − δ1)max(ki−1,0)(1 − δ2)max(ki−2,0)

]
,

where δ1 = 0.0309587 and δ2 = 0.0165525.

Our three-way OCS can be applied to edge-weighted and unweighted online bipartite
matching [33].

1.1 Related Work
Introduced by Karp, Vazirani, and Vazirani [25], the unweighted online bipartite matching has
been intensively and extensively studied with alternative proofs [16, 4, 8, 9] and under various
settings including stochastic models [12, 29, 17, 32, 13, 20], fully online models [18, 19, 22],
and general arrival models [14]. The study of edge-weighted online bipartite matching problem
was initiated by Kalyanasundaram & Pruhs [24] and Khuller, Mitchell, & Vazirani [27],
who independently considered this problem under the metric assumption. Feldman, Korula,
Mirrokni, Muthukrishnan, and Pál [11] first investigated the edge-weighted version on
arbitrary weights with free disposal, and more thorough understanding of this problem was
achieved by subsequent work [28, 10]. Other variants and applications of online bipartite
matching have been studied as well, including AdWords [31, 23], vertex-weighted version [1,
21, 13], stochastic or random arrival models [17, 26, 6, 20], and the windowed version [3].
We refer interested readers to the survey of Mehta [30].

Recent related works. Recently, after the authors independently obtained the present
results but prior to announcing them, the authors learned that two closely related papers
were announced on arXiv [15, 5].

The other open question raised by Fahrbach et al. [10] than the one answered by this
paper was to improve two-way OCS. Gao, He, Huang, Nie, Yuan, and Zhong [15] addresses
this question by giving a novel automata-based OCS, successfully departing from the previous
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matching-based approach: their two-way OCS is a 0.167-OCS. In addition to this, they also
give an improved primal-dual analysis and a variant of two-way OCS specifically adapted for
edge-weighted online bipartite matching, yielding a 0.519-competitve algorithm. Finally, they
consider a weaker relaxed notion of OCS called semi-OCS, where the probability bound holds
only for consecutive prefixes. They provide a multi-way version of this semi-OCS that leads
to a 0.593-competitive algorithm for unweighted/vertex-weighted online bipartite matching.

Blanc and Charikar [5] generalize Fahrbach et al.’s definition of OCS in two ways and
give m-way OCS for any m. One of the two generalizations, called (F, m)-OCS, gives the
probability bound specified as a discrete function rather than a fixed-form formula such as
(1/2)j(1 − γ)max(j−1,0). The other is called continuous OCS, which allows an element of the
ground set to appear in a subset “to a fraction”, where the probability bound is now specified
as a continuous function. Their continuous OCS along with their improved primal-dual
analysis gives a 0.5368-competitive algorithm for edge-weighted online bipartite matching.

Considering these new results, an interesting question is whether the techniques from
these papers and our independent result can together bring improvements in OCS or related
problems such as online matching. In fact, since our framework treats the second two-
way OCS as a black-box, any improved two-way OCS can be directly plugged into our
three-way OCS. Combining the new two-way 0.167-OCS of Gao et al. [15] with our results,
for example, immediately yields a 0.5132-competitive algorithm for edge-weighted online
bipartite matching.

2 Preliminaries

In this section, we present some notation, definitions, and previous results to be used
throughout this paper. Let us first introduce the definition of n-way OCS and two-way
γ-OCS.

▶ Definition 3 (n-way OCS). Given a ground set, an n-way OCS is an online algorithm that,
at each iteration, takes a subset of size n as the input and irrevocably chooses an element
from the subset.

For any element u of the ground set, we say a subsequence of subsets containing u is
consecutive if every subset containing u that arrives between the first and last subsets of
the subsequence is also in the subsequence. We also say that two or more subsequences of
subsets containing u are disjoint if no two of these subsequences share a subset.

For example, suppose we are given {u, v}, {u, w}, {v, w}, {u, x}, and {u, y} during five
timesteps, in that order. Observe that ({u, v}, {u, w}, {u, x}) is a consecutive subsequence
containing u, but ({u, v}, {u, x}, {u, y}) is not because {u, w} appears between {u, v} and
{u, x}. Note also that ({u, v}, {u, w}) and ({u, y}) constitute a set of (two) disjoint consec-
utive subsequences containing u.

▶ Definition 4 (Two-way γ-OCS). A two-way γ-OCS is a two-way OCS such that, for
any element u and a set of m disjoint consecutive subsequences of pairs containing u of
lengths k1, · · · , km, the probability that u never gets chosen by the OCS from any of the given
subsequences is at most

∏m
i=1

( 1
2
)ki (1 − γ)max(ki−1,0).

Fahrbach et al. [10] presents two versions of two-way OCS with varying performance
guarantees. We will use both in later sections. For the sake of completeness, we present a
full description of the two-way 1/16-OCS of Fahrbach et al. below.
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1/16-OCS. We will define what is called the ex-ante graph first. Although the algorithm
does not need to explicitly construct this graph, it helps simplify the presentation. The
vertices of the ex-ante graph correspond to the input pairs. For each pair, say {u, v}, we
introduce an edge between this pair and the immediately following pair that contains u,
and likewise for v. For example, if an element u appears at timesteps 2, 4, and 7, pairs 2
and 4 are adjacent, and so are 4 and 7. This implies that every vertex has degree of at
most 4. We annotate each edge with the common element that caused this edge. For example,
if two pairs i = {u, v} and j = {v, w} are adjacent due to v, let (i, j)v denote the edge
(and its annotation). Note that the ex-ante graph may have parallel edges (with different
annotations).

The algorithm samples exactly three random bits for each pair (or vertex). We will use
them to define what is called the ex-post graph and further determine the output of the
algorithm. The ex-post graph is on the same set of vertices. The first random bit is used to
determine if the vertex becomes a “sender” or a “receiver”. If it becomes a sender, we use
the second random bit to choose one of the two elements of the pair, and the sender will
“want” to select the edge to the immediately following pair that shares the chosen element (if
it exists). Similarly, if a vertex becomes a receiver, we use the second random bit to choose
one element, and the receiver will “want” to select the edge to the immediately preceding
pair that shares the element. Each edge of the ex-ante graph enters the ex-post graph if and
only if both of its endpoints want to select the edge. Observe that the ex-post graph is a
matching in the ex-ante graph.

Finally, the output of the algorithm is determined as follows. For every unmatched vertex,
its output is determined solely by its third random bit. For each edge in the ex-post graph,
we negatively correlate the choice of the two endpoints: we use the third random bit of the
sender to determine the output of the sender, and the output of the receiver is determined
so that the decision made for the shared element is the opposite. For example, if we have an
edge annotated with u in the ex-post graph and the sender did not choose u, we choose u for
the receiver; otherwise, we do not choose u for the receiver. The third random bit of the
receiver is discarded.

▶ Lemma 5 (Fahrbach et al. [10]). This algorithm is a two-way 1
16 -OCS.

This algorithm also has the following useful property.

▶ Lemma 6 (Fahrbach et al. [10]). Given a consecutive subsequence of pairs containing
an element of length k input to this algorithm, the probability that there does not exist
any edges in the subgraph of the ex-post graph induced by the consecutive pairs is at most
(1 − 1/16)max(k−1,0).

The other version is a 13
√

13−35
108 -OCS.

▶ Lemma 7 (Fahrbach et al. [10]). There exists a two-way 13
√

13−35
108 -OCS.

In the unweighted online bipartite matching problem, we are given a bipartite graph
G = (L ∪ R, E) where we only know L in advance. Each vertex v ∈ R arrives one by one,
and the edges adjacent with v are only then revealed. Upon each arrival of v, we irrevocably
decide whether we match v, and if so, to which exposed adjacent vertex in L we match. The
objective is to find a matching of the maximum size in G.

In the edge-weighted online bipartite matching problem with free disposal, we are given a
bipartite graph G = (L ∪ R, E) as well as an edge weight wuv ≥ 0 for each (u, v) ∈ E, where
we only know L in advance, again. Each vertex v ∈ R arrives one at a timestep, and the
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49:6 Making Three out of Two: Three-Way Online Correlated Selection

edges adjacent with v and their edge weights are disclosed at that time. Upon each arrival
of v, we decide whether we match v, and if so, to which adjacent vertex in L we match.
We remark that v can be matched to a vertex u that is already matched, after disposing of
the edge incident with u in the current matching (free disposal). The objective is to find a
maximum-weight matching in G.

3 Three-Way Online Correlated Selection

In this section, we present our three-way OCS and analyze it by considering the special case
where we are interested in a single consecutive subsequence of triples containing a common
element. We will extend this to the general case in Section 4.

3.1 Algorithm
Let A and B be two-way OCS algorithms whose random choices are independent. In particular,
we choose Fahrbach et al.’s 1/16-OCS as A and 13

√
13−35

108 -OCS as B. Let γA := 1/16 and
γB := 13

√
13−35

108 . We use the 1/16-OCS as A due to its property that, in its ex-post graph,
each edge’s existence is determined by (the random bits of) its endpoints only.

Upon arrival of a triple, say {u, v, w}, we choose a pair uniformly at random out of
{{u, v}, {u, w}, {v, w}}. We refer to this step as the random pair choice phase. Without loss
of generality, suppose that {u, v} is chosen. We then input {u, v} to A and let it choose one
element from the pair. Let us say (without loss of generality again) that u is returned by A.
Now we let B choose one element from {u, w}. The element chosen by B is the final output
of this iteration.

3.2 Overview of the Analysis
The goal of Section 3 is to prove the following theorem.

▶ Theorem 8. Consider a consecutive subsequence of timesteps whose triples contain some
element u of the ground set. Let k be the length of the subsequence. The probability that our
three-way OCS never chooses u during these k timesteps is at most

η(k) := c1tk
1 + c2tk

2 − c3tk
3 − c4tk

4

for some c1 ≈ 0.957795, c2 ≈ 0.176756, c3 ≈ 0.011047, c4 ≈ 0.131738, t1 ≈ 0.630024, t2 ≈
0.599919, t3 ≈ 0.148345, and t4 = 0.3125, which is bounded from above by(

2
3

)k

(1 − δ1)max(k−1,0)(1 − δ2)max(k−2,0),

where δ1 = 0.0309587 and δ2 = 0.0165525.

In what follows, we will fix an arbitrary set of random choices made during the random
pair choice phase, and condition on them. Let x be the number of pairs containing u from
the subsequence that are passed to A. Observe that these pairs also form a consecutive
subsequence to A, and that the number of u’s that are left out of the first OCS is k − x.

For y = 0, · · · , x, let p(x, y) be the (conditional) probability that A returns y number of
u’s from these pairs. Then, we can see that the (conditional) probability that u never gets
chosen from the given consecutive triples is bounded from above by

x∑
y=0

p(x, y)
(

1
2

)k−x+y

(1 − γB)max(k−x+y−1,0) (1)
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by Lemma 7 and the fact that the pairs containing u passed to B are also consecutive (see also
Definition 4). To simplify the presentation, we introduce two shorthands: for a probability
mass function p′ defined on {0, · · · , x}, let

θ(x, p′) :=
x∑

y=0
p′(y) ·

(
1
2

)y

(1 − γB)y−1 ; and (2)

θ′(x, p′) :=
x∑

y=0
p′(y) ·

(
1
2

)y

(1 − γB)max(y−1,0)
. (3)

Observe that (1) is equal to
( 1−γB

2
)k−x

θ(x, p(x, ·)) if k > x and θ′(k, p(k, ·)) otherwise (if
k = x).

We would like to bound (1), but unfortunately, p(x, y) depends on the actual input to A,
not just x. Yet, we can circumvent this problem by exploiting the behavior of A. Recall that
A constructs the ex-post graph (which is a matching in the ex-ante graph) and negatively
correlate the two endpoints of each edge in the ex-post graph. Therefore, when we consider
the subgraph of the ex-post graph induced by the given consecutive pairs, we can observe
that

for each edge in this subgraph, exactly one u is chosen from its two endpoints, and
if a vertex is isolated in this subgraph, u is chosen with probability 1/2, independently
from the other vertices.

This observation implies that the probability distribution p(x, ·) is a unimodal symmetric
distribution. Moreover, the more likely A puts an edge in the ex-post graph, the pointier
the distribution would be. Using this property, we will construct an imaginary probability
distribution {p∗(x, y)}y=0,··· ,x such that

p∗(x, y) is flatter than (or, formally, centrally dominated by) any distribution p that
results from A (see the proof of Lemma 10); and
p∗(x, y) only depends on x, not the input itself.

We will further demonstrate that, in (2) and (3), substituting p′ with a centrally dominated
distribution would only overestimate (2) and (3) (Lemma 9). Intuitively speaking, this is
because (1/2)y(1 − γB)y−1 and (1/2)y(1 − γB)max(y−1,0) are (nearly) convex functions.

Thus, the probability that our three-way OCS never chooses u from the given consecutive
triples can finally be bounded from above by

η(k) :=
k∑

x=0
binom

(
k, x,

2
3

) [
x∑

y=0
p∗(x, y)

(
1
2

)k−x+y

(1 − γB)max(k−x+y−1,0)

]
, (4)

where binom(k, x, r) represents the probability of the binomial distribution for x successes
out of k trials with probability r (Lemma 11).

3.3 Using a Centrally Dominated Distribution
Recall that k denotes the length of the subsequence, i.e., the number of triples, and x denotes
the number of pairs containing u passed to A. Let y be the number of u’s returned by A;
then, B receives a consecutive subsequence of pairs containing u of length k − x + y.

We remark that the probability that u is never chosen by B, conditioned on the event that
A takes x pairs containing u and outputs y number of u’s, can be bounded by

( 1
2
)k−x+y ·

(1 − γB)max(k−x+y−1,0) from Lemma 7. Note that this bound depends only on the lengths k,
x, and y, not the actual input to B.
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For A, on the other hand, we need to calculate the probability that exactly y number
of u’s are chosen by A from the given subsequence of pairs. However, this probability
distribution highly depends on the input to A; therefore, we cannot conveniently fix a
distribution parameterized by length x anymore. Nonetheless, we will show that there exists
a bounding distribution, depending only on x, such that it yields a valid upper bound on
the probability that u is never chosen by our entire algorithm from the given subsequence of
triples.

3.3.1 Central Dominance
To construct the bounding distribution, we need the notion of central dominance. Recall the
definition.

▶ Definition 1 (Central Dominance). Given two discrete symmetric probability distributions
D1 and D2 on {0, 1, · · · , x} whose probability mass functions are p1 and p2, respectively,
we say D1 centrally dominates D2 if there exists z ∈ [0, x

2 ] such that, for any integer
y ∈ [ x

2 − z, x
2 + z], p1(y) ≥ p2(y), and for any integer y ∈ [0, x

2 − z) ∪ ( x
2 + z, x], p1(y) ≤ p2(y).

Intuitively speaking, this definition indicates how flat a symmetric probability distribution
is. Following is the lemma that formalizes why a flat distribution helps bound the probability
that u never gets chosen from our three-way OCS. The definitions of θ(·, ·) and θ′(·, ·) can be
found in (2) and (3), respectively. It is easy to intuitively see that the first half of the lemma
should hold; yet, θ′ is only nearly convex and requires some work.

▶ Lemma 9. Suppose we are given two discrete symmetric distributions D1 and D2 on
{0, 1, · · · , x} whose probability mass functions are p1 and p2, respectively. If D1 centrally
dominates D2, we have θ(x, p1) ≤ θ(x, p2) and θ′(x, p1) ≤ θ′(x, p2).

Proof. If x = 0, 1, it is trivial since there is only one possible symmetric distribution. Now
we assume that x ≥ 2. Given a discrete symmetric distribution with a probability mass
function p, let us consider the following operation: For some w, z ∈ [0, x

2 ] such that w > z,
we decrease p(x

2 − z) and p(x
2 + z) by some ϵ > 0, and increase p(x

2 − w) and p(x
2 + w) by

ϵ, instead. We can observe that p still forms a valid probability distribution, and changes
θ(x, p) by

∆θ(x, p) = ϵ
(1

2

)x/2
(1 − γB)x/2−1

[(1 − γB

2

)w

+
(1 − γB

2

)−w

−
(1 − γB

2

)z

−
(1 − γB

2

)−z
]

.

Let α := (1 − γB)/2 and f(t) := αt + α−t. Since f ′(t) = ln α · (αt − α−t), we can verify that
f(t) is increasing on t ≥ 0. Hence, we can see that

∆θ(x, p) = ϵ

(
1
2

)x/2
(1 − γB)x/2−1(f(w) − f(z)) ≥ 0.

Since D1 centrally dominates D2, we can transform p1 into p2 by transferring the mass
through a few times of the above operation with proper w’s, z’s, and ϵ’s. For each application,
θ(x, p) only increases, yielding that θ(x, p1) ≤ θ(x, p2).

Proving the other statement is more subtle. Suppose we transform p1 into p2 through
the same method. If we increase the probabilities of x

2 − w and x
2 + w where w < x

2 , we can
apply to the above analysis since the change of θ′(x, p) is exactly the same as ∆θ(x, p).

It remains to consider when the probabilities of 0 and x get increased by ϵ. Assume that
we instead decrease the probabilities of x

2 − z and x
2 + z where 0 ≤ z ≤ x

2 − 1. The change of
θ′(x, p) would be
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∆θ′(x, p) := ϵ

[
1 +

(1
2

)x

(1 − γB)x−1 −
(1

2

)x/2−z

(1 − γB)x/2−z−1 −
(1

2

)x/2+z

(1 − γB)x/2+z−1
]

.

Let β := (1/2)x/2(1 − γB)x/2−1 and g(z) := (2/(1 − γB))z. We then rewrite ∆θ′(x, p) as

∆θ′(x, p) = ϵ
[
1 + β2(1 − γB) − β(g(z) + 1/g(z))

]
.

The partial derivative of ∆θ′(x, p) with respect to z is

∂∆θ′(x, p)
∂z

= −ϵβ ln
(

2
1 − γB

) [(
2

1 − γB

)z

−
(

1 − γB

2

)z]
.

Note that ∂∆θ′(x,p)
∂z ≤ 0 for z ≥ 0. Thus, we can bound ∆θ′(x, p) from below by plugging

z = x
2 − 1, i.e.,

∆θ′(x, p) ≥ ϵ

[
1
2 − 1 + γB

2

(
1
2

)x−1
(1 − γB)x−2

]
.

Since x ≥ 2, we have

∆θ′(x, p) ≥ ϵ

[
1
2 − 1 + γB

4

]
≥ 0,

where the last inequality comes from the fact that γB < 1. ◀

3.3.2 Bounding Distribution
In this section, we construct the bounding distribution. As was noted earlier, A negatively
correlates the endpoints of every edge of the ex-post graph. Therefore, we can write the
probability p(x, y) that the two-way OCS chooses precisely y number of u’s out of the given
x consecutive pairs if we are given q ∈ R⌊x/2⌋+1

+ defined as follows: for i = 0, · · · , ⌊ x
2 ⌋, qi is

the probability that exactly i edges of the ex-post graph have both endpoints in the given
subsequence. Note that

∑⌊x/2⌋
i=0 qi = 1. We have

p(x, y) = q0 ·
(

x

y

) (
1
2

)x

+q1 ·
(

x − 2
y − 1

) (
1
2

)x−2
+ · · ·+q⌊x/2⌋ ·

(
x − 2⌊x/2⌋
y − ⌊x/2⌋

) (
1
2

)x−2⌊x/2⌋

,

where
(

b
c

)
:= 0 if b < c or c < 0.

Note that q (and therefore in turn p) depends on the actual input to A. Given any
probability vector q ∈ R⌊x/2⌋+1

+ , let D(q) (or D(q0, · · · , q⌊x/2⌋)) denote the probability
distribution {p(x, y)}y=0,...,x. It is easy to verify that, for all q, D(q) is a valid probability
distribution that is symmetric on y = x

2 .
Now we construct the bounding distribution. For x = 0, · · · , k, let αx := (1−γA)max(x−1,0)

for γA = 1/16. We choose D(αx, 1 − αx, 0, · · · , 0) as our bounding distribution. Let p∗(x, ·)
be the probability mass function of the bounding distribution, i.e., for each y = 0, · · · , x,

p∗(x, y) :=
{

αx

( 1
2
)x

, if y = 0 or y = x,

αx

(
x
y

) ( 1
2
)x + (1 − αx)

(
x−2
y−1

) ( 1
2
)x−2

, otherwise.

Following is a key lemma to show that D(αx, 1 − αx, 0, · · · , 0) is a good choice of the
centrally dominated distribution.
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▶ Lemma 10. Given a consecutive subsequence of pairs containing u of length x (0 ≤ x ≤ k),
let q ∈ R⌊x/2⌋+1

+ be the probability vector realized by A: i.e., qi is the probability that
exactly i edges of the ex-post graph have both endpoints in the given subsequence. We then
have θ(x, p(x, ·)) ≤ θ(x, p∗(x, ·)) and θ′(x, p(x, ·)) ≤ θ′(x, p∗(x, ·)), where p(x, ·) follows the
distribution D(q).

Proof. For x = 0, 1, it is easy to see that p(x, y) = p∗(x, y) for every possible y since
q0 = 1 = αx. For x ≥ 2, we construct intermediate distributions as follows:

D0 := D(q0, 1 − q0, 0, · · · , 0),
D1 := D(q0, q1, 1 − q0 − q1, · · · , 0),

· · · ,

D⌊x/2⌋−1 := D(q0, q1, q2, · · · , 1 −
∑⌊x/2⌋−1

i=0 qi) = D(q).

We claim that D0 centrally dominates D(αx, 1−αx, 0, · · · , 0) and, for each j = 1, · · · , ⌊ x
2 ⌋−1,

Dj centrally dominates Dj−1. Then, by repeatedly applying Lemma 9, we can prove the
lemma.

Let us first prove that D0 centrally dominates D(αx, 1 − αx, 0, · · · , 0). Since both
distributions are symmetric, it is sufficient for us to consider y ∈ [0, x

2 ]. By Lemma 6, we
have q0 ≤ αx. If q0 = αx, D0 is equivalent to D(αx, 1 − αx, 0, · · · , 0), completing the proof.
We now assume q0 < αx. If y = 0, D0 has the smaller probability. This implies that there
must exist a point in [1, x

2 ] where D0 has the greater probability since both distributions are
valid.

Let y∗ be the smallest such point. We show that for any integer y ∈ [y∗, x
2 ], D0 has

the greater probability. Let g(y) := (q0 − αx)
(

x
y

) ( 1
2
)x + (αx − q0)

(
x−2
y−1

) ( 1
2
)x−2 be the

subtraction of the probability of D0 from that of D(αx, 1 − αx, 0, · · · , 0) at point y. It
suffices to prove that g(y) is non-decreasing on [y∗, x

2 ] ⊆ [1, x
2 ]. By rewriting the formula, we

have g(y) = (αx − q0)
(

x
y

) ( 1
2
)x

(
y(x−y)
4x(x−1) − 1

)
, and it is not hard to see that the function is

increasing on [1, x
2 ].

A similar argument can be applied to show that, for each j = 1, · · · , ⌊ x
2 ⌋ − 1, Dj centrally

dominates Dj−1. Indeed, if qj = 1 −
∑j−1

i=0 qi, Dj is equivalent to Dj−1. We thus assume that
qj < 1 −

∑j−1
i=0 qi. Observe that Dj has the same probabilities as Dj−1 for y = 0, · · · , j − 1,

and has the smaller probability for y = j; hence, there exists a point in
[
j + 1, x

2
]

where Dj

has the greater probability, and let y∗ be the smallest such value. Again, let g(y) be the
difference obtained by subtracting the probability of Dj−1 from that of Dj at point y. We
can write

g(y) = (1 −
j∑

i=0
qi)

[(
x − 2j − 2
y − j − 1

) (
1
2

)x−2j−2
−

(
x − 2j

y − j

) (
1
2

)x−2j
]

= (1 −
j∑

i=0
qi)

(
x − 2j

y − j

) (
1
2

)x−2j [
(y − j)(x − y − j)

4(x − 2j)(x − 2j − 1) − 1
]

,

implying that g(y) is increasing on
[
y∗, x

2
]

⊆
[
j + 1, x

2
]
. ◀

We are now ready to bound the probability that our three-way OCS never chooses the
element u from the consecutive subsequence of triples of length k. Let binom(k, x, r) be the
probability mass function of the binomial distribution for x successes out of k trials with
probability r, i.e., binom(k, x, r) :=

(
k
x

)
rx(1 − r)k−x. Finally, we define η(k) as follows and it

will be the desired bound.
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η(k) :=
k∑

x=0
binom

(
k, x,

2
3

) [
x∑

y=0
p∗(x, y)

(
1
2

)k−x+y

(1 − γB)max(k−x+y−1,0)

]
.

▶ Lemma 11. Given a consecutive subsequence of triples containing u of length k, the
probability that our three-way OCS never chooses u from the subsequence is at most η(k).

Proof. Conditioned on the pairs selected by the random pair choice phase, let x be the
number of pairs containing u inserted into A. Recall that these pairs form a consecutive
subsequence. Let p(x, y) denote the probability that A returns y number of u’s from this
subsequence. Note that p follows D(q) for some q.

Note that, if A returns y number of u’s, B eventually takes k −x+y consecutive pairs that
originate from the given consecutive triples. By Lemma 7, we can see that the probability
that u is never selected from the given consecutive subsequences of triples is bounded from
above by

x∑
y=0

p(x, y)
(

1
2

)k−x+y

(1 − γB)max(k−x+y−1,0),

which can be rewritten as
( 1−γB

2
)k−x

θ(x, p(x, ·)) if x < k or θ′(k, p(x, ·)) if x = k. In any
case, by Lemma 10, it can be further bounded by

x∑
y=0

p∗(x, y)
(

1
2

)k−x+y

(1 − γB)max(k−x+y−1,0).

It is noteworthy that this value depends only on the number x of u’s selected by the random
pair choice phase. Observe that the probability that x pairs containing u are chosen from k

consecutive triples by the random pair choice phase is exactly binom(k, x, 2/3), completing
our proof. ◀

It still remains to calculate the bounds on η(k) in the same form as stated in Theorem 8.
We refer the interested readers to [33].

4 General Bound

We now extend our discussion to the general case and provide a bound for a set of disjoint
consecutive subsequences. The following theorem states this bound.

▶ Theorem 2 (restated). Consider a set of m disjoint consecutive subsequences of triples
containing an element u. Let k1, . . . , km be the lengths of these subsequences. The probability
that our three-way OCS never chooses u from these m subsequences is at most

∏m
i=1 η(ki).

Let k = (k1, · · · , km) be a vector whose i-th entry is the length of the i-th subsequence.
In what follows, we fix (and condition upon) the choices made by the random pair choice
phase. Let x := (x1, · · · , xm) be the (now constant) vector whose i-th entry represents
the number of pairs containing u from the i-th subsequence that are passed to A. For
y := (y1, · · · , ym) ≤ x, let p(x, y) be the conditional probability that A chooses yi number
of u’s from the i-th subsequence of pairs for all i. Finally, let p0 be the probability that our
three-way OCS never chooses u. By Lemma 7, we can observe that p0 is no greater than∑

y≤x

p(x, y)
m∏

i=1

(
1
2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0). (5)

ISAAC 2021



49:12 Making Three out of Two: Three-Way Online Correlated Selection

To prove the desired bound, we will first present how we can modify the input to A without
ever decreasing (5). After finitely many modifications, we will be able to “decouple” the
random choices across different subsequences.

Recall that each pair inserted into A takes three independent random bits. The first
random bit determines if the pair is a sender or a receiver. The second random bit decides
which adjacent vertex to correlate. The third random bit selects an element to be output
for this pair, unless the pair becomes matched as a receiver. Note that, with the first two
random bits, the ex-post graph can be determined.

For each vertex j containing u in the ex-ante graph, let pred(j, u) and pred(j, −u) be
the immediate predecessor of j linked by u and by the other element than u, respectively.
Without loss of generality, let v be the other element of j than u. If we have j′ and j, residing
in different subsequences and j′ appearing before j, such that
(A) j′ = pred(j, u) or j′ = pred(j, −u) (or both); or
(B) there exists ĵ such that

ĵ = pred(j′, u) or ĵ = pred(j′, −u),
ĵ = pred(j, −u), and
ĵ is not contained in any subsequence,

we call them violations. In particular, the first type of violations are called Type A violations
and the other Type B. Our goal is to modify the input so that there are no violations while
(5) never decreased.

For notational simplicity, we let ϕ(y) :=
( 1

2
)k−x+y (1 − γB)max(k−x+y−1,0) for all y =

0, · · · , x. Observe that ϕ(y) is decreasing over y. We can now consider (5) as the expected
value of

∏m
i=1 ϕ(yi).

Removing Type A Violations. Let us first consider the case when j′ = pred(j, u) =
pred(j, −u). We build the new input to A by inserting j1 = (u, ⋆) and j2 = (v, ⋄) right before
j is input where ⋆ and ⋄ are elements appearing nowhere else and ⋆ ̸= ⋄.

Let us fix some random bits of A: one can think of this as further conditioning on those
bits. In particular, we will fix the first two random bits of every pair except for j1 and j2.

Suppose for now that the random bits dictate that neither (j′, j)u nor (j′, j)v is present
in the ex-post graph of the original input. We claim that the probability distribution p

conditioned on this event stays the same even after the modification and therefore the
“contribution” to the expectation (5) is not affected either (or in other words, the conditional
expectation remains equal).

We will show a stronger statement that the marginal probability distribution of the pairs
in the subsequences stays the same. (Then the probability distribution p will automatically
be the same.) Note that the ex-post graph of the two inputs will look almost identical, except
for possible addition of some edges incident with j1 or j2. Therefore, the output choice of
every pair in the subsequences will be determined by the same random bit in both inputs,
except that, it may be the case that j was not adjacent with any pair in the ex-post graph
of the original input but becomes a receiver of j1 (or j2) after the modification. In this case,
the output choice of j was determined by the third random bit of j before but by that of j1
(or j2) now. However, the only pair in the subsequence whose output choice is determined
by the third random bit of j1 (or j2) is j. Moreover, the third random bits of the pairs are
i.i.d.; hence, the marginal distribution of the pairs in the subsequences stays the same, as
was claimed.

Now consider the remaining case where j′ and j are adjacent in the ex-post graph of the
original input. In this case, we will show that the conditional expectation cannot decrease
(as opposed to staying the same). To ease the argument, we will fix more random bits (and
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argue that the conditional expectation cannot decrease in all cases): we fix the third random
bits of all pairs, except for j′, j, j1, and j2. Let z′ be the number of u’s chosen from the
subsequence containing j′, except for j′ itself, in the original input. (Since we did not fix the
third random bit of j′, we cannot determine what the output choice of j′ is.) Similarly, let z

be the number of u’s chosen from the subsequence containing j, except for j itself.
In the original input, note that the output choice of j′ and j are both determined by the

third random bit of j′. That is, with probability 1/2, z′ and z +1 respectively are the number
of u’s chosen from the subsequences containing j′ and j, and with probability 1/2, z′ + 1 and
z are. In the modified input, however, while we do not know whether j′ is adjacent with j1 or
j2 in the ex-post graph, j1 and j2 can each be adjacent with at most one pair in the ex-post
graph. Therefore, in the marginal distribution of the pairs in the subsequences, the output
choice of j′ is independent from all other pairs, including j. This shows that the number of
u’s chosen from the subsequence containing j′ in the modified input is z′ with probability
1/2 and z′ + 1 with probability 1/2, and independently from that, the number of u’s from
the subsequence containing j is z with probability 1/2 and z + 1 with probability 1/2.

Let us now calculate the increase of the conditional expectation of
∏m

i=1 ϕ(yi), but since
we are only interested in its sign, we will ignore the common terms, i.e., ϕ(yi)’s for the
subsequences other than ones containing j and j′. Note that

1
4 [ϕ(z′)ϕ(z) + ϕ(z′)ϕ(z + 1) + ϕ(z′ + 1)ϕ(z) + ϕ(z′ + 1)ϕ(z + 1)]

−1
2 [ϕ(z′)ϕ(z + 1) + ϕ(z′ + 1)ϕ(z)]

= 1
4(ϕ(z′) − ϕ (z′ + 1))(ϕ(z) − ϕ(z + 1)) ≥ 0,

where the inequality follows from the fact that ϕ(y) is decreasing over y. This shows our
claim.

Let us now consider the case where j′ = pred(j, u) ̸= pred(j, −u) or vice versa. In this
case, we insert j = (u, ⋆) or j = (v, ⋆) right before j, where ⋆ again is a unique element. A
similar argument shows that we can show that (5) can only increase in the new input.

Removing Type B Violations. We build the new input to A by inserting j = (v, ⋆) right
before j, where ⋆ is a new unique element. Let us fix the first two random bits of every pair
(including j). We claim that the marginal distributions of the pairs in the subsequences are
identical in both inputs.

Consider the ex-post graph of the two inputs. They will be almost identical only with
the following possible differences:

(ĵ, j) may be only in the original ex-post graph;
(ĵ, j) or(j, j) may be only in the new ex-post graph.

For each pair x in the subsequences, the ex-post graph determines, among the third random
bits of all pairs, which one determines the output choice of x.

Suppose (ĵ, j) is in the original ex-post graph. In this case, j is the only pair in the
subsequences whose output choice is determined by the third random bit of ĵ. (Recall that ĵ

is not in any subsequence.) In the modified input, if (j, j) is in the ex-post graph, j will be
the only pair in the subsequences whose output choice is determined by the third random
bit of j. If (j, j) is not in the ex-post graph, j will be the only pair whose output choice
is determined by j. Note that the output choice of every other pair in the subsequences is
determined by the same random bit in both inputs. Again, since the third random bits of
the pairs are i.i.d., this shows that the marginal distribution stays the same.
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Suppose now (ĵ, j) is not in the original ex-post graph. Let us focus on j, since it is the
only pair whose output choice may be determined by a different random bit in the modified
input. If j was adjacent with another pair in the original ex-post graph, the edge will remain
in the new ex-post graph, too, in which case there is nothing to prove. Otherwise, it may be
the case that (j, j) may be newly introduced as an edge in the ex-post graph, but this only
means that j will be the only pair in the subsequences whose output choice is determined by
the third random bit of j (instead of j). The marginal distribution therefore stays the same.

Further Modification. We can remove all Type A and Type B violations after finitely many
modifications of the input. We can interpret A as an algorithm that first constructs the
ex-ante graph using the first two random bits and then determines the output using only the
third random bits. Our next modification will delete some edges directly from the ex-ante
graph rather than modifying the input pairs. (You could alternatively think of this edge
being “disabled,” which can never appear in the ex-post graph even if it is chosen by the
first two random bits of the pairs.) We will now show how we can modify this input graph
without affecting (5). Suppose we have some pair j′ and j such that

j′ appears before j,
j′ and j are adjacent in the ex-ante graph, and
j is not in any subsequence.

If we delete this edge from the ex-ante graph, this can change the output choice of only j in
A’s output. (Imagine we fix all random bits, and we can easily observe this fact.) Therefore,
we can safely delete all such edges without affecting the marginal distribution of the pairs in
the subsequences.

Once we remove all such edges, the following argument shows that no two pairs in different
subsequences can belong to the same connected component of the ex-ante graph: since two
pairs that are not in any subsequences cannot be adjacent, the only way of having two pairs
from different subsequences in the same connected component is by having a direct edge
in-between (which would be a Type A violation) or a length-2 path whose “midpoint” is a
predecessor of the two pairs (which would be a Type B violation: note that, in the definition
of Type B violation, ĵ cannot be pred(j, u) because j′ appears before j).

Conclusion. Let p′(x, y) be the probability that A chooses yi number of u’s from the i-th
subsequence of pairs for all i in the modified input. We have so far shown that

p0 ≤
∑
y≤x

p′(x, y)
m∏

i=1

(
1
2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0).

For each i, let p′
i(xi, yi) be the probability that A chooses yi number of u’s from the i-

th subsequence of pairs. Since A may introduce negative correlation only on those pair
of vertices that are adjacent in the ex-ante graph, output choices made across different
connected components of the ex-ante graph will be independent. This implies that p′(x, y) =∏m

i=1 p′
i(xi, yi), yielding

p0 ≤
∑
y≤x

p′(x, y)
m∏

i=1

(
1
2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0)

=
∑
y≤x

m∏
i=1

p′
i(xi, yi)

(
1
2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0)
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=
m∏

i=1

xi∑
yi=0

p′
i(xi, yi)

(
1
2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0)

≤
m∏

i=1

xi∑
yi=0

p∗(xi, yi)
(

1
2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0),

where the last inequality follows from the proof of Lemma 11. Since p∗(x, ·) depends only
on x, rather than the actual input, the bound on p0 we obtain depends only on x. Let
binom(k, x, r) :=

∏m
i=1 binom(ki, xi, r). Now the probability that our three-way OCS never

chooses u from the given subsequences is no greater than∑
x≤k

binom
(

k, x,
2
3

) [
m∏

i=1

xi∑
yi=0

p∗(xi, yi)
(1

2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0)

]

=
∑
x≤k

[
m∏

i=1

binom
(

ki, xi,
2
3

)] [
m∏

i=1

xi∑
yi=0

p∗(xi, yi)
(1

2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0)

]

=
m∏

i=1

ki∑
xi=0

binom
(

ki, xi,
2
3

) [
xi∑

yi=0

p∗(xi, yi)
(1

2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0)

]

=
m∏

i=1

η(ki).

This completes the proof of Theorem 2.

5 Application to Online Bipartite Matching

Our three-way OCS can be applied to online bipartite matching problems. While the
algorithm and the factor-revealing LP had to be generalized to a higher dimension, our
algorithm and analysis are still analogous to Fahrbach et al. [10]. We refer the interested
readers to [33].

▶ Theorem 12. There exists a 0.5096-competitive algorithm for unweighted online bipartite
matching.

▶ Theorem 13. There exists a 0.5093-competitive algorithm for edge-weighted online bipartite
matching with free disposal.
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