49 research outputs found

    Cause-specific long-term mortality in survivors of childhood cancer in Switzerland: A population-based study.

    Get PDF
    Survivors of childhood cancer have a higher mortality than the general population. We describe cause-specific long-term mortality in a population-based cohort of childhood cancer survivors. We included all children diagnosed with cancer in Switzerland (1976-2007) at age 0-14 years, who survived ≥5 years after diagnosis and followed survivors until December 31, 2012. We obtained causes of death (COD) from the Swiss mortality statistics and used data from the Swiss general population to calculate age-, calendar year-, and sex-standardized mortality ratios (SMR), and absolute excess risks (AER) for different COD, by Poisson regression. We included 3,965 survivors and 49,704 person years at risk. Of these, 246 (6.2%) died, which was 11 times higher than expected (SMR 11.0). Mortality was particularly high for diseases of the respiratory (SMR 14.8) and circulatory system (SMR 12.7), and for second cancers (SMR 11.6). The pattern of cause-specific mortality differed by primary cancer diagnosis, and changed with time since diagnosis. In the first 10 years after 5-year survival, 78.9% of excess deaths were caused by recurrence of the original cancer (AER 46.1). Twenty-five years after diagnosis, only 36.5% (AER 9.1) were caused by recurrence, 21.3% by second cancers (AER 5.3) and 33.3% by circulatory diseases (AER 8.3). Our study confirms an elevated mortality in survivors of childhood cancer for at least 30 years after diagnosis with an increased proportion of deaths caused by late toxicities of the treatment. The results underline the importance of clinical follow-up continuing years after the end of treatment for childhood cancer

    A Prospective Multicenter SPOG 2003 FN Study of Microbiologically Defined Infections in Pediatric Cancer Patients with Fever and Neutropenia.

    Get PDF
    BACKGROUND: Fever and neutropenia (FN) often complicate anticancer treatment and can be caused by potentially fatal infections. Knowledge of pathogen distribution is paramount for optimal patient management. METHODS: Microbiologically defined infections (MDI) in pediatric cancer patients presenting with FN by nonmyeloablative chemotherapy enrolled in a prospective multi-center study were analyzed. Effectiveness of empiric antibiotic therapy in FN episodes with bacteremia was assessed taking into consideration recently published treatment guidelines for pediatric patients with FN. RESULTS: MDI were identified in a minority (22%) of pediatric cancer patients with FN. In patients with, compared to without MDI, fever (median, 5 [IQR 3-8] vs. 2 [IQR1-3] days, p < 0.001) and hospitalization (10 [6-14] vs. 5 [3-8] days, p < 0.001) lasted longer, transfer to the intensive care unit was more likely (13 of 95 [14%] vs. 7 of 346 [2.0%], p < 0.001), and antibiotics were given longer (10 [7-14] vs. 5 [4-7], p < 0.001). Empiric antibiotic therapy in FN episodes with bacteremia was highly effective if not only intrinsic and reported antimicrobial susceptibilities were considered but the purposeful omission of coverage for coagulase negative staphylococci and enterococci was also taken into account (81% [95%CI 68 - 90] vs. 96.6% [95%CI 87 - 99.4], p = 0.004) CONCLUSIONS: MDI were identified in a minority of FN episodes but they significantly affected management and the clinical course of pediatric cancer patients. Compliance with published guidelines was associated with effectiveness of empiric antibiotic therapy in FN episodes with bacteremia

    Formal Methods and Testing: Hypotheses, and Correctness Approximations

    Full text link
    mcg at lri.fr Abstract. It has been recognised for a while that formal specifications can bring much to software testing. Numerous methods have been proposed for the derivation of test cases from various kinds of formal specifications, their submission, and verdict. All these methods rely upon some hypotheses on the system under test that formalise the gap between the success of a test campaign and the correctness of the system under test.

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Failure of voriconazole to cure disseminated zygomycosis in an immunocompromised child.

    Get PDF
    Voriconazole is increasingly used as a first-line agent for empirical antifungal therapy of prolonged febrile neutropenia in paediatric cancer patients. We describe the case of a 9-year-old patient with stage IV Burkitt lymphoma, who developed pulmonary and splenic zygomycosis while receiving voriconazole for persistent febrile neutropenia. The causative agent, Absidia corymbifera, was identified by broad-range fungal PCR in a lung biopsy sample. The patient was successfully treated with a combination of partial resection of the left upper lobe and antifungal therapy with high-dose liposomal amphotericin B followed by oral itraconazole as demonstrated by resolving pulmonary infiltrates on serial high resolution CT scans. CONCLUSION: This case emphasises that the lack of in vitro activity of voriconazole against zygomycetes is clinically relevant. Failure of voriconazole in suspected fungal infection should be investigated for the possibility of zygomycosis. Broad-range polymerase chain reaction may be able to identify the causative organism when cultures remain sterile
    corecore