20 research outputs found

    A smart fire detection system using iot technology with automatic water sprinkler

    Get PDF
    House combustion is one of the main concerns for builders, designers, and property residents. Singular sensors were used for a long time in the event of detection of a fire, but these sensors can not measure the amount of fire to alert the emergency response units. To address this problem, this study aims to implement a smart fire detection system that would not only detect the fire using integrated sensors but also alert property owners, emergency services, and local police stations to protect lives and valuable assets simultaneously. The proposed model in this paper employs different integrated detectors, such as heat, smoke, and flame. The signals from those detectors go through the system algorithm to check the fire's potentiality and then broadcast the predicted result to various parties using GSM modem associated with the system. To get real-life data without putting human lives in danger, an IoT technology has been implemented to provide the fire department with the necessary data. Finally, the main feature of the proposed system is to minimize false alarms, which, in turn, makes this system more reliable. The experimental results showed the superiority of our model in terms of affordability, effectiveness, and responsiveness as the system uses the Ubidots platform, which makes the data exchange faster and reliable

    Smart security door system using SMS based energy harvest

    Get PDF
    Over the last decade, different studies have been conducted to increase security to identify sensor technology and provide alternative energy with other energy harvest techniques such as vibration energy harvester and sun energy harvester. There is no combinational approach to utilize the door to create energy and use it for security measures in the literature, making our system different and unique. This proposed system comprises the security and the energy harvest; the security section utilizes a motion detector sensor to detect intruders. For instance, the magnetic door lock type firmly locks the door, which can only open with a generated password. On the other side, the energy harvest section utilizes the door motion to generate electricity for the system, which solves power shortage and limited battery life issues. Moreover, this study includes a GSM module that allows authorized owners to receive a generated password as a security enhancement. This design mainly focuses on improving or optimizing the conventional security doors' overall performance as sliding door, panel door, or revolving door. The experimental results show the system efficiency in terms of power generation and the time needed to authenticate the property owner. Notably, the power generator can generate electricity more rapidly, while the needed time to receive the mobile device's security code is around 3.6 seconds

    Unmasking Deception: Empowering Deepfake Detection with Vision Transformer Network

    Get PDF
    The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project no. (IFKSUOR3–057-3).Peer reviewedPublisher PD

    Automated Cellular-Level Dual Global Fusion of Whole-Slide Imaging for Lung Adenocarcinoma Prognosis

    Get PDF
    Histopathologic whole-slide images (WSI) are generally considered the gold standard for cancer diagnosis and prognosis. Survival prediction based on WSI has recently attracted substantial attention. Nevertheless, it remains a central challenge owing to the inherent difficulties of predicting patient prognosis and effectively extracting informative survival-specific representations from WSI with highly compounded gigapixels. In this study, we present a fully automated cellular-level dual global fusion pipeline for survival prediction. Specifically, the proposed method first describes the composition of different cell populations on WSI. Then, it generates dimension-reduced WSI-embedded maps, allowing for efficient investigation of the tumor microenvironment. In addition, we introduce a novel dual global fusion network to incorporate global and inter-patch features of cell distribution, which enables the sufficient fusion of different types and locations of cells. We further validate the proposed pipeline using The Cancer Genome Atlas lung adenocarcinoma dataset. Our model achieves a C-index of 0.675 (±0.05) in the five-fold cross-validation setting and surpasses comparable methods. Further, we extensively analyze embedded map features and survival probabilities. These experimental results manifest the potential of our proposed pipeline for applications using WSI in lung adenocarcinoma and other malignancies

    Data-Driven Deep Learning-Based Attention Mechanism for Remaining Useful Life Prediction: Case Study Application to Turbofan Engine Analysis

    No full text
    Accurately predicting the remaining useful life (RUL) of the turbofan engine is of great significance for improving the reliability and safety of the engine system. Due to the high dimension and complex features of sensor data in RUL prediction, this paper proposes four data-driven prognostic models based on deep neural networks (DNNs) with an attention mechanism. To improve DNN feature extraction, data are prepared using a sliding time window technique. The raw data collected after normalizing is simply fed into the suggested network, requiring no prior knowledge of prognostics or signal processing and simplifying the proposed method’s applicability. In order to verify the RUL prediction ability of the proposed DNN techniques, the C-MAPSS benchmark dataset of the turbofan engine system is validated. The experimental results showed that the developed long short-term memory (LSTM) model with attention mechanism achieved accurate RUL prediction in both scenarios with a high degree of robustness and generalization ability. Furthermore, the proposed model performance outperforms several state-of-the-art prognosis methods, where the LSTM-based model with attention mechanism achieved an RMSE of 12.87 and 11.23 for FD002 and FD003 subset of data, respectively

    Prognostic Prediction Of Remaining Useful Life In High Dimensional Gas Turbine Using Enhanced Deep Convolutional Neural Network

    No full text
    Accurately predicting the remaining useful life (RUL) of the rotary machines is of great significance for improving the reliability and safety of the industrial mechanical system

    A Comparative Analysis of Machine Learning Techniques for Cyberbullying Detection on Twitter

    No full text
    The advent of social media, particularly Twitter, raises many issues due to a misunderstanding regarding the concept of freedom of speech. One of these issues is cyberbullying, which is a critical global issue that affects both individual victims and societies. Many attempts have been introduced in the literature to intervene in, prevent, or mitigate cyberbullying; however, because these attempts rely on the victims’ interactions, they are not practical. Therefore, detection of cyberbullying without the involvement of the victims is necessary. In this study, we attempted to explore this issue by compiling a global dataset of 37,373 unique tweets from Twitter. Moreover, seven machine learning classifiers were used, namely, Logistic Regression (LR), Light Gradient Boosting Machine (LGBM), Stochastic Gradient Descent (SGD), Random Forest (RF), AdaBoost (ADB), Naive Bayes (NB), and Support Vector Machine (SVM). Each of these algorithms was evaluated using accuracy, precision, recall, and F1 score as the performance metrics to determine the classifiers’ recognition rates applied to the global dataset. The experimental results show the superiority of LR, which achieved a median accuracy of around 90.57%. Among the classifiers, logistic regression achieved the best F1 score (0.928), SGD achieved the best precision (0.968), and SVM achieved the best recall (1.00)

    Authentication securing methods for mobile identity: issues, solutions and challenges

    No full text
    Smartphone devices have become an essential part of our daily activities for performing various essential applications containing very confidential information. For this reason, the security of the device and the transactions is required to ensure that the transactions are performed legally. Most regular mobile users’ authentication methods used are passwords and short messages. However, numerous security vulnerabilities are inherent in various authentication schemes. Fingerprint identification and face recognition technology sparked a massive wave of adoption a few years back. The international mobile equipment identity (IMEI) and identity-based public key cryptography (ID-based PKC) have also become widely used options. More complex methods have been introduced, such as the management flow that combines transaction key creation, encryption, and decryption in processing users’ personal information and biometric features. There is also a combination of multiple user-based authentications, such as user’s trip routes initialization with the coordinates of home and office to set template trajectories and stay points for authentication. Therefore, this research aimed to identify the issues with the available authentication methods and the best authentication solution while overcoming the challenges

    Cyberbullying Detection on Social Media Using Stacking Ensemble Learning and Enhanced BERT

    No full text
    The prevalence of cyberbullying on Social Media (SM) platforms has become a significant concern for individuals, organizations, and society as a whole. The early detection and intervention of cyberbullying on social media are critical to mitigating its harmful effects. In recent years, ensemble learning has shown promising results for detecting cyberbullying on social media. This paper presents an ensemble stacking learning approach for detecting cyberbullying on Twitter using a combination of Deep Neural Network methods (DNNs). It also introduces BERT-M, a modified BERT model. The dataset used in this study was collected from Twitter and preprocessed to remove irrelevant information. The feature extraction process involved utilizing word2vec with Continuous Bag of Words (CBOW) to form the weights in the embedding layer. These features were then fed into a convolutional and pooling mechanism, effectively reducing their dimensionality, and capturing the position-invariant characteristics of the offensive words. The validation of the proposed stacked model and BERT-M was performed using well-known model evaluation measures. The stacked model achieved an F1-score of 0.964, precision of 0.950, recall of 0.92 and the detection time reported was 3 min, which surpasses the previously reported accuracy and speed scores for all known NLP detectors of cyberbullying, including standard BERT and BERT-M. The results of the experiment showed that the stacking ensemble learning approach achieved an accuracy of 97.4% in detecting cyberbullying on Twitter dataset and 90.97% on combined Twitter and Facebook dataset. The results demonstrate the effectiveness of the proposed stacking ensemble learning approach in detecting cyberbullying on SM and highlight the importance of combining multiple models for improved performance
    corecore