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Abstract: With the development of image-generating technologies, significant progress has been
made in the field of facial manipulation techniques. These techniques allow people to easily modify
media information, such as videos and images, by substituting the identity or facial expression of
one person with the face of another. This has significantly increased the availability and accessibility
of such tools and manipulated content termed ‘deepfakes’. Developing an accurate method for
detecting fake images needs time to prevent their misuse and manipulation. This paper examines the
capabilities of the Vision Transformer (ViT), i.e., extracting global features to detect deepfake images
effectively. After conducting comprehensive experiments, our method demonstrates a high level of
effectiveness, achieving a detection accuracy, precision, recall, and F1 rate of 99.5 to 100% for both
the original and mixture data set. According to our existing understanding, this study is a research
endeavor incorporating real-world applications, specifically examining Snapchat-filtered images.

Keywords: deepfake; identification; Vision Transformer; pretrained; fine tuning

MSC: 68T07

1. Introduction

The explosion of social media platforms and the widespread availability of affordable
equipment such as cameras, cellphones, and laptops over the last decade led to an expo-
nential increase in online material, particularly in the form of images and movies. These
platforms have revolutionized the way individuals exchange and broadcast information,
allowing for the quick distribution of content and simple access to a wide collection of
media.

The human face is the most distinguishing feature of an individual, and it plays
an important role in identity recognition and communication. Rapid advancements in
face synthesis technology have created a significant security risk. In some circumstances,
deepfake technology, a subdomain of artificial intelligence (AI), has raised concerns about
the authenticity and integrity of facial photographs.

To generate high-resolution deepfake images, this technology requires complicated
algorithms, typically based on deep learning (DL) models such as generative adversarial
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networks (GANs) [1]. The spread of deepfake technology brings several issues and poten-
tial hazards to numerous industries. For example, in the cybersecurity empire, the capacity
to convincingly manipulate facial photos raises worries about identity theft, deception,
and unauthorized access to critical information. Furthermore, the popularity of deepfakes
poses a significant risk to public trust, as unscrupulous actors can use this technology to
create deceptive visual indicators, spread misinformation, or harm individuals’ reputa-
tions. To address these concerns, academics have concentrated their efforts on developing
approaches for detecting and mitigating the impact of deepfakes [2]. This encompasses
leveraging advancements in computer vision, machine learning, and forensic analysis to
identify significant signs of image manipulation and distinguish between genuine and
manipulated facial images. Understanding the underlying mechanisms of deepfake gener-
ation and developing robust detection methods are essential for the integration of visual
content and maintaining trust in digital media.

Several methods were proposed to identify deepfakes and most of the methods are
based on deep learning. The United States Defense Advanced Research Projects Agency
(DARPA) recently launch media forensic research to develop methods for the detection of
fake media [3]. Furthermore, Facebook with the collaboration of Microsoft launches the
AI-based deepfake identification challenge [4].

The paper is structured as follows: In Section 2, we present the literature review and
discuss related works addressing the deepfake problem using deep learning. Section 3
outlines the proposed research methodology and provides a detailed explanation of the val-
idation dataset used for evaluating the proposed Vision Transformer (ViT) model. Moving
to Section 4, we present the results and conduct an in-depth analysis. Finally, in Section 5,
we conclude the study, emphasizing key takeaways and identifying potential directions for
future research.

2. Literature Review

There are currently many well-known methods proposed for the identification of fake
images, but the generalization capability of these models is significantly low. The perfor-
mance of these models drops due to the frequent updating of deepfake or manipulation
methods. Akhtar et al. [5] considered SqueezeNet [6], VGG16 [7], ResNet [8], DenseNet [9],
and GoogleNet [10] in their study for the identification of face manipulation. They achieved
effective accuracy for the same manipulation type of training and testing samples, but the
performance decreased for the novel manipulation that was not considered during the
training.

Z. Akhtar and D. Dasgupta [11] examined the possibility of local feature descriptors to
recognize manipulated faces. This study reported on a comparative experimental analysis
of ten local feature descriptors using the ‘DeepfakeTIMIT’ database.

In the study of Bekci et al. [12], a deepfake detection system utilizing metric learning
and steganalysis-rich models is proposed to improve performance under unseen data
and manipulations. To assess the generalization of the suggested approach, an empirical
analysis was conducted on the FaceForensics++, DeepFakeTIMIT, and CelebDF data sets,
which are all openly accessible. Their suggested framework achieved accuracy increases of
5% to 15% when subjected to hidden modifications.

Li et al. [13] conducted a study in which they observed distinctions between eye-
blinking patterns in deepfake videos compared to those exhibited by humans. As a result,
they developed a novel eye-blinking detection technique specifically designed for identify-
ing deepfake videos. Gupta et al. considered EEG signal features and eye movement for
the identification of deepfake videos.

In the study of Nguyen et al. [14], the eyebrow region was utilized as a set of features
for detecting deepfake videos. Four deep learning methods, namely LightCNN, Resnet,
DenseNet, and SqueezeNet, were employed for this purpose. Notably, the achieved highest
AUC (Area Under Curve) values on the UADFV and Celeb-DF data sets were 0.984 and
0.712, respectively.
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Trans-DF, a deepfake detection approach based on random forests, was proposed by
Patel et al. [15]. The Trans-DF model’s detection accuracy of 0.902 demonstrates how well
it can spot deepfake videos. Yang et al. introduced an approach based on SVM classifiers
for distinguishing deepfake images and videos. Their method leverages the differences in
head poses as crucial features for discrimination. Utilizing this technique, they successfully
developed a system that effectively detects and distinguishes deepfake content with an
AUROC score of 0.890.

By using biological cues to analyze residuals, Ciftci et al. [16] introduced a novel
method for locating the sources of deepfake content. This innovative study was the first to
use biological clues in deepfake source detection. They used the Face Forensics++ data set
for experimental evaluations, including several ablation tests, to validate their approach.
Surprisingly, they were able to identify sources with an accuracy rate of 93.39% using
four deepfake generators. These results demonstrate the effectiveness of their suggested
approach and its potential for precisely locating the origins of deepfake content.

A deepfake detection model based on machine learning named MSTA_Net was in-
troduced by Yang et al. [17] in 2022. This model focused on evaluating an image’s texture
properties to find abnormalities indicating deepfake manipulation. Notably, the MSTA_Net
model considered the full image instead of only the facial regions. The model established
relationships between the forged and unmanipulated areas of the image. The detection pro-
cedure includes looking for irregularities in the texture of the image. Any variations were
flagged as fake if they were found. On the other hand, if no variations were discovered, the
image was labeled as non-fake, indicating a higher probability of authenticity. Based on
the overall texture characteristics, the identification of genuine and manipulated images is
possible with their proposed model.

In the field of deepfake discrimination, the integration of multiple attention mecha-
nisms and models has emerged as a crucial approach. In a recent study, Zhao et al. [18]
introduced a multi-attentional deepfake detection method designed to identify subtle and
partial features present in both real and fake images. The proposed technique consisted
of three essential components. First, multiple spatial attention heads were employed to
focus on distinct regions of the images, enabling the model to capture intricate details. Sec-
ond, a textural-feature-enhancement block was incorporated to enhance the discriminative
power of the detected features. Third, an aggregate module was utilized to consolidate
the information gathered from the various attention heads and facilitate a comprehensive
decision-making process. By leveraging these components, the multi-attentional deepfake
detection method proposed by Zhao et al. [18] aimed to improve the accuracy and effective-
ness of deepfake discrimination by effectively capturing subtle visual cues and enhancing
textural features.

In their research, Wang et al. [19] presented a novel deepfake detection approach
using a multi-modal, multi-scale transformer. The proposed model was designed to
effectively identify deepfake images by analyzing various image patches of different sizes.
By employing a multi-scale approach, the model addressed the need to capture local
inconsistencies at different spatial levels within the image. This allowed for the detection of
subtle manipulations or artifacts that may be present in different regions of the image. The
multi-modal aspect of the proposed model indicates that it incorporates multiple sources
of information or modalities to enhance the detection process. Overall, the multi-modal,
multi-scale transformer model introduced by Wang et al. [19] offers a promising approach
to deepfake detection, enabling the analysis of image patches at different spatial levels
and leveraging multiple modalities for improved accuracy and robustness. Based on the
localization and the utilization of the VGG16 model for the detection of various forgery
types, as explored by Shelke et al. [20,21], Wang et al. [22] proposed an approach based
on frequency domain analysis and residual networks for the purpose of identifying or
detecting deepfake content.

CNNs have exhibited impressive accuracy in the realm of deepfake identification,
underscoring their significance in this domain. Despite CNNs’ ability to capture features of
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minute objects within images using deep architectures, pinpointing critical regions accu-
rately can pose challenges. To address this limitation, our study incorporates the Vision
Transformer model. In the ViT framework, the input image undergoes segmentation into
blocks during the model’s general training phase, treating each block as an independent
entity. Through self-attention modules, the ViT model discerns relationships among these
embedded patches. Notably, ViT has showcased exceptional performance in conventional
classification tasks. The transformer’s self-attention mechanism enhances the importance
of pivotal features while mitigating the influence of noise-inducing features [23]. Inspired
by this particular standpoint, the present investigation introduces a deepfake image recog-
nition system utilizing the Vision Transformer (ViT) architecture. The results demonstrate
that the suggested framework produces favorable results in the realm of deepfake im-
age identification. This study brings forth notable contributions to the discipline in the
subsequent manners:

• The fine-tuned ViT model presented in this study demonstrates superior performance
compared to existing state-of-the-art models in the domain of deep-fake identification.

• A patch-wise self-attention module and global feature extraction technique considered
in this study.

• Evaluating model for real-world in the deepfake detection task, with a focus on Snapchat.
• After conducting a thorough analysis of various standard data sets, our research

substantiates the exceptional robustness and generalizability of the proposed method,
surpassing numerous state-of-the-art techniques.

3. Materials and Methods

In this section, we have outlined and presented the methodologies that were employed
and proposed to attain accurate identification of fake images.

3.1. Data Set

For our experimental investigation, we employed a data set procured from [24], see
Table 1. However, it is essential to acknowledge that the data set size was constrained by
the available resources. As a result, our study encompassed a selection of 100,000 images,
evenly split between 50,000 authentic images and 50,000 images generated using GAN
techniques, all sourced from the original data set. To ensure optimal model performance,
we have trained the model with a balanced data set.

Table 1. Real and GAN Generated (Fake) Images.

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 13 
 

 

of minute objects within images using deep architectures, pinpointing critical regions ac-
curately can pose challenges. To address this limitation, our study incorporates the Vision 
Transformer model. In the ViT framework, the input image undergoes segmentation into 
blocks during the model’s general training phase, treating each block as an independent 
entity. Through self-attention modules, the ViT model discerns relationships among these 
embedded patches. Notably, ViT has showcased exceptional performance in conventional 
classification tasks. The transformer’s self-attention mechanism enhances the importance 
of pivotal features while mitigating the influence of noise-inducing features [23]. Inspired 
by this particular standpoint, the present investigation introduces a deepfake image 
recognition system utilizing the Vision Transformer (ViT) architecture. The results 
demonstrate that the suggested framework produces favorable results in the realm of deep-
fake image identification. This study brings forth notable contributions to the discipline in the 
subsequent manners: 
• The fine-tuned ViT model presented in this study demonstrates superior performance 

compared to existing state-of-the-art models in the domain of deep-fake identification. 
• A patch-wise self-attention module and global feature extraction technique considered 

in this study. 
• Evaluating model for real-world in the deepfake detection task, with a focus on Snapchat. 
• After conducting a thorough analysis of various standard data sets, our research sub-

stantiates the exceptional robustness and generalizability of the proposed method, 
surpassing numerous state-of-the-art techniques. 

3. Materials and Methods 
In this section, we have outlined and presented the methodologies that were em-

ployed and proposed to attain accurate identification of fake images. 

3.1. Data Set 
For our experimental investigation, we employed a data set procured from [24], see 

Table 1. However, it is essential to acknowledge that the data set size was constrained by 
the available resources. As a result, our study encompassed a selection of 100,000 images, 
evenly split between 50,000 authentic images and 50,000 images generated using GAN 
techniques, all sourced from the original data set. To ensure optimal model performance, 
we have trained the model with a balanced data set. 

Table 1. Real and GAN Generated (Fake) Images. 

 

 
 

     

Fake Fake Fake Real Real Real 

3.2. ViT Architecture 
This section introduces the ViT framework, highlighting its key principles, structure, 

self-attention mechanism, multi-headed self-attention, and the mathematical foundations 
that motivate its design. Initially, the ViT was introduced in 2020 [25] as a deep neural 
network architecture specifically optimized for image recognition workloads. It extends 
the Transformer architecture, which was originally designed for natural language pro-
cessing, and incorporates the innovative concept of considering images as sequences of 
tokens, which are commonly represented by image patches. ViT effectively handles these 
token sequences by leveraging the capabilities of the transformer design. Notably, the 
transformer architecture that underpins ViT has been successfully applied to a variety of 

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 13 
 

 

of minute objects within images using deep architectures, pinpointing critical regions ac-
curately can pose challenges. To address this limitation, our study incorporates the Vision 
Transformer model. In the ViT framework, the input image undergoes segmentation into 
blocks during the model’s general training phase, treating each block as an independent 
entity. Through self-attention modules, the ViT model discerns relationships among these 
embedded patches. Notably, ViT has showcased exceptional performance in conventional 
classification tasks. The transformer’s self-attention mechanism enhances the importance 
of pivotal features while mitigating the influence of noise-inducing features [23]. Inspired 
by this particular standpoint, the present investigation introduces a deepfake image 
recognition system utilizing the Vision Transformer (ViT) architecture. The results 
demonstrate that the suggested framework produces favorable results in the realm of deep-
fake image identification. This study brings forth notable contributions to the discipline in the 
subsequent manners: 
• The fine-tuned ViT model presented in this study demonstrates superior performance 

compared to existing state-of-the-art models in the domain of deep-fake identification. 
• A patch-wise self-attention module and global feature extraction technique considered 

in this study. 
• Evaluating model for real-world in the deepfake detection task, with a focus on Snapchat. 
• After conducting a thorough analysis of various standard data sets, our research sub-

stantiates the exceptional robustness and generalizability of the proposed method, 
surpassing numerous state-of-the-art techniques. 

3. Materials and Methods 
In this section, we have outlined and presented the methodologies that were em-

ployed and proposed to attain accurate identification of fake images. 

3.1. Data Set 
For our experimental investigation, we employed a data set procured from [24], see 

Table 1. However, it is essential to acknowledge that the data set size was constrained by 
the available resources. As a result, our study encompassed a selection of 100,000 images, 
evenly split between 50,000 authentic images and 50,000 images generated using GAN 
techniques, all sourced from the original data set. To ensure optimal model performance, 
we have trained the model with a balanced data set. 

Table 1. Real and GAN Generated (Fake) Images. 

 

 
 

     

Fake Fake Fake Real Real Real 

3.2. ViT Architecture 
This section introduces the ViT framework, highlighting its key principles, structure, 

self-attention mechanism, multi-headed self-attention, and the mathematical foundations 
that motivate its design. Initially, the ViT was introduced in 2020 [25] as a deep neural 
network architecture specifically optimized for image recognition workloads. It extends 
the Transformer architecture, which was originally designed for natural language pro-
cessing, and incorporates the innovative concept of considering images as sequences of 
tokens, which are commonly represented by image patches. ViT effectively handles these 
token sequences by leveraging the capabilities of the transformer design. Notably, the 
transformer architecture that underpins ViT has been successfully applied to a variety of 

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 13 
 

 

of minute objects within images using deep architectures, pinpointing critical regions ac-
curately can pose challenges. To address this limitation, our study incorporates the Vision 
Transformer model. In the ViT framework, the input image undergoes segmentation into 
blocks during the model’s general training phase, treating each block as an independent 
entity. Through self-attention modules, the ViT model discerns relationships among these 
embedded patches. Notably, ViT has showcased exceptional performance in conventional 
classification tasks. The transformer’s self-attention mechanism enhances the importance 
of pivotal features while mitigating the influence of noise-inducing features [23]. Inspired 
by this particular standpoint, the present investigation introduces a deepfake image 
recognition system utilizing the Vision Transformer (ViT) architecture. The results 
demonstrate that the suggested framework produces favorable results in the realm of deep-
fake image identification. This study brings forth notable contributions to the discipline in the 
subsequent manners: 
• The fine-tuned ViT model presented in this study demonstrates superior performance 

compared to existing state-of-the-art models in the domain of deep-fake identification. 
• A patch-wise self-attention module and global feature extraction technique considered 

in this study. 
• Evaluating model for real-world in the deepfake detection task, with a focus on Snapchat. 
• After conducting a thorough analysis of various standard data sets, our research sub-

stantiates the exceptional robustness and generalizability of the proposed method, 
surpassing numerous state-of-the-art techniques. 

3. Materials and Methods 
In this section, we have outlined and presented the methodologies that were em-

ployed and proposed to attain accurate identification of fake images. 

3.1. Data Set 
For our experimental investigation, we employed a data set procured from [24], see 

Table 1. However, it is essential to acknowledge that the data set size was constrained by 
the available resources. As a result, our study encompassed a selection of 100,000 images, 
evenly split between 50,000 authentic images and 50,000 images generated using GAN 
techniques, all sourced from the original data set. To ensure optimal model performance, 
we have trained the model with a balanced data set. 

Table 1. Real and GAN Generated (Fake) Images. 

 

 
 

     

Fake Fake Fake Real Real Real 

3.2. ViT Architecture 
This section introduces the ViT framework, highlighting its key principles, structure, 

self-attention mechanism, multi-headed self-attention, and the mathematical foundations 
that motivate its design. Initially, the ViT was introduced in 2020 [25] as a deep neural 
network architecture specifically optimized for image recognition workloads. It extends 
the Transformer architecture, which was originally designed for natural language pro-
cessing, and incorporates the innovative concept of considering images as sequences of 
tokens, which are commonly represented by image patches. ViT effectively handles these 
token sequences by leveraging the capabilities of the transformer design. Notably, the 
transformer architecture that underpins ViT has been successfully applied to a variety of 

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 13 
 

 

of minute objects within images using deep architectures, pinpointing critical regions ac-
curately can pose challenges. To address this limitation, our study incorporates the Vision 
Transformer model. In the ViT framework, the input image undergoes segmentation into 
blocks during the model’s general training phase, treating each block as an independent 
entity. Through self-attention modules, the ViT model discerns relationships among these 
embedded patches. Notably, ViT has showcased exceptional performance in conventional 
classification tasks. The transformer’s self-attention mechanism enhances the importance 
of pivotal features while mitigating the influence of noise-inducing features [23]. Inspired 
by this particular standpoint, the present investigation introduces a deepfake image 
recognition system utilizing the Vision Transformer (ViT) architecture. The results 
demonstrate that the suggested framework produces favorable results in the realm of deep-
fake image identification. This study brings forth notable contributions to the discipline in the 
subsequent manners: 
• The fine-tuned ViT model presented in this study demonstrates superior performance 

compared to existing state-of-the-art models in the domain of deep-fake identification. 
• A patch-wise self-attention module and global feature extraction technique considered 

in this study. 
• Evaluating model for real-world in the deepfake detection task, with a focus on Snapchat. 
• After conducting a thorough analysis of various standard data sets, our research sub-

stantiates the exceptional robustness and generalizability of the proposed method, 
surpassing numerous state-of-the-art techniques. 

3. Materials and Methods 
In this section, we have outlined and presented the methodologies that were em-

ployed and proposed to attain accurate identification of fake images. 

3.1. Data Set 
For our experimental investigation, we employed a data set procured from [24], see 

Table 1. However, it is essential to acknowledge that the data set size was constrained by 
the available resources. As a result, our study encompassed a selection of 100,000 images, 
evenly split between 50,000 authentic images and 50,000 images generated using GAN 
techniques, all sourced from the original data set. To ensure optimal model performance, 
we have trained the model with a balanced data set. 

Table 1. Real and GAN Generated (Fake) Images. 

 

 
 

     

Fake Fake Fake Real Real Real 

3.2. ViT Architecture 
This section introduces the ViT framework, highlighting its key principles, structure, 

self-attention mechanism, multi-headed self-attention, and the mathematical foundations 
that motivate its design. Initially, the ViT was introduced in 2020 [25] as a deep neural 
network architecture specifically optimized for image recognition workloads. It extends 
the Transformer architecture, which was originally designed for natural language pro-
cessing, and incorporates the innovative concept of considering images as sequences of 
tokens, which are commonly represented by image patches. ViT effectively handles these 
token sequences by leveraging the capabilities of the transformer design. Notably, the 
transformer architecture that underpins ViT has been successfully applied to a variety of 

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 13 
 

 

of minute objects within images using deep architectures, pinpointing critical regions ac-
curately can pose challenges. To address this limitation, our study incorporates the Vision 
Transformer model. In the ViT framework, the input image undergoes segmentation into 
blocks during the model’s general training phase, treating each block as an independent 
entity. Through self-attention modules, the ViT model discerns relationships among these 
embedded patches. Notably, ViT has showcased exceptional performance in conventional 
classification tasks. The transformer’s self-attention mechanism enhances the importance 
of pivotal features while mitigating the influence of noise-inducing features [23]. Inspired 
by this particular standpoint, the present investigation introduces a deepfake image 
recognition system utilizing the Vision Transformer (ViT) architecture. The results 
demonstrate that the suggested framework produces favorable results in the realm of deep-
fake image identification. This study brings forth notable contributions to the discipline in the 
subsequent manners: 
• The fine-tuned ViT model presented in this study demonstrates superior performance 

compared to existing state-of-the-art models in the domain of deep-fake identification. 
• A patch-wise self-attention module and global feature extraction technique considered 

in this study. 
• Evaluating model for real-world in the deepfake detection task, with a focus on Snapchat. 
• After conducting a thorough analysis of various standard data sets, our research sub-

stantiates the exceptional robustness and generalizability of the proposed method, 
surpassing numerous state-of-the-art techniques. 

3. Materials and Methods 
In this section, we have outlined and presented the methodologies that were em-

ployed and proposed to attain accurate identification of fake images. 

3.1. Data Set 
For our experimental investigation, we employed a data set procured from [24], see 

Table 1. However, it is essential to acknowledge that the data set size was constrained by 
the available resources. As a result, our study encompassed a selection of 100,000 images, 
evenly split between 50,000 authentic images and 50,000 images generated using GAN 
techniques, all sourced from the original data set. To ensure optimal model performance, 
we have trained the model with a balanced data set. 

Table 1. Real and GAN Generated (Fake) Images. 

 

 
 

     

Fake Fake Fake Real Real Real 

3.2. ViT Architecture 
This section introduces the ViT framework, highlighting its key principles, structure, 

self-attention mechanism, multi-headed self-attention, and the mathematical foundations 
that motivate its design. Initially, the ViT was introduced in 2020 [25] as a deep neural 
network architecture specifically optimized for image recognition workloads. It extends 
the Transformer architecture, which was originally designed for natural language pro-
cessing, and incorporates the innovative concept of considering images as sequences of 
tokens, which are commonly represented by image patches. ViT effectively handles these 
token sequences by leveraging the capabilities of the transformer design. Notably, the 
transformer architecture that underpins ViT has been successfully applied to a variety of 

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 13 
 

 

of minute objects within images using deep architectures, pinpointing critical regions ac-
curately can pose challenges. To address this limitation, our study incorporates the Vision 
Transformer model. In the ViT framework, the input image undergoes segmentation into 
blocks during the model’s general training phase, treating each block as an independent 
entity. Through self-attention modules, the ViT model discerns relationships among these 
embedded patches. Notably, ViT has showcased exceptional performance in conventional 
classification tasks. The transformer’s self-attention mechanism enhances the importance 
of pivotal features while mitigating the influence of noise-inducing features [23]. Inspired 
by this particular standpoint, the present investigation introduces a deepfake image 
recognition system utilizing the Vision Transformer (ViT) architecture. The results 
demonstrate that the suggested framework produces favorable results in the realm of deep-
fake image identification. This study brings forth notable contributions to the discipline in the 
subsequent manners: 
• The fine-tuned ViT model presented in this study demonstrates superior performance 

compared to existing state-of-the-art models in the domain of deep-fake identification. 
• A patch-wise self-attention module and global feature extraction technique considered 

in this study. 
• Evaluating model for real-world in the deepfake detection task, with a focus on Snapchat. 
• After conducting a thorough analysis of various standard data sets, our research sub-

stantiates the exceptional robustness and generalizability of the proposed method, 
surpassing numerous state-of-the-art techniques. 

3. Materials and Methods 
In this section, we have outlined and presented the methodologies that were em-

ployed and proposed to attain accurate identification of fake images. 

3.1. Data Set 
For our experimental investigation, we employed a data set procured from [24], see 

Table 1. However, it is essential to acknowledge that the data set size was constrained by 
the available resources. As a result, our study encompassed a selection of 100,000 images, 
evenly split between 50,000 authentic images and 50,000 images generated using GAN 
techniques, all sourced from the original data set. To ensure optimal model performance, 
we have trained the model with a balanced data set. 

Table 1. Real and GAN Generated (Fake) Images. 

 

 
 

     

Fake Fake Fake Real Real Real 

3.2. ViT Architecture 
This section introduces the ViT framework, highlighting its key principles, structure, 

self-attention mechanism, multi-headed self-attention, and the mathematical foundations 
that motivate its design. Initially, the ViT was introduced in 2020 [25] as a deep neural 
network architecture specifically optimized for image recognition workloads. It extends 
the Transformer architecture, which was originally designed for natural language pro-
cessing, and incorporates the innovative concept of considering images as sequences of 
tokens, which are commonly represented by image patches. ViT effectively handles these 
token sequences by leveraging the capabilities of the transformer design. Notably, the 
transformer architecture that underpins ViT has been successfully applied to a variety of 

Fake Fake Fake Real Real Real

3.2. ViT Architecture

This section introduces the ViT framework, highlighting its key principles, structure,
self-attention mechanism, multi-headed self-attention, and the mathematical foundations
that motivate its design. Initially, the ViT was introduced in 2020 [25] as a deep neural
network architecture specifically optimized for image recognition workloads. It extends the
Transformer architecture, which was originally designed for natural language processing,
and incorporates the innovative concept of considering images as sequences of tokens,
which are commonly represented by image patches. ViT effectively handles these token
sequences by leveraging the capabilities of the transformer design. Notably, the transformer
architecture that underpins ViT has been successfully applied to a variety of tasks, including
picture restoration and object detection [26,27], demonstrating its broad applicability and
effectiveness [28].
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Tokenization and embedding of the input picture are crucial stages in the ViT architec-
ture. The image is divided into a grid of non-overlapping patches, flattened, and mapped
to a higher-dimensional space using a linear transformation followed by normalization.
The ViT model gains the capacity to capture both global and local information from the
image by conducting tokenization and embedding, aiding comprehensive learning.

The Transformer architecture, while capable of processing sequences, does not ex-
plicitly take into account the positioning information of each token inside the sequence.
The ViT design uses pre-defined positional embeddings to address this constraint. These
embeddings are supplementary vectors that encode the position of each token in the se-
quence before being sent into the transformer layers. The model can now grasp the relative
positions of tokens and extract spatial information from the input image thanks to this
integration.

The Multi-head Self-Attention (MSA) mechanism is at the heart of the ViT design.
This component enables the model to attend to many parts of the image at the same time.
MSA is made up of distinct “heads,” each of which computes attention independently.
These attention heads can focus on different portions of the image, resulting in a variety
of representations that are then concatenated to generate the final image representation.
By attending to several sections continuously, the ViT can record complicated interactions
between input elements. This enhancement, however, increases complexity and computa-
tional cost because it necessitates more attention to heads and more processing to aggregate
the outputs from all heads. MSA can be stated mathematically as follows:

MSA(q, k, v) = Concat (h1, h2, . . . , hn) (1)

In Equation (1), the letters q, k, and v represent the query, key, and value inputs,
respectively. The self-attention mechanism is the cornerstone of transformers, allowing
for explicit modeling of interactions and linkages across all sequences in prediction tasks.
Unlike CNNs, the self-attention layer gathers insights and features from the whole input
sequence to collect both local and global information. This distinguishing feature of self-
attention distinguishes it from CNNs since it promotes a more comprehensive interpretation
and representation of the information.

The attention mechanism computes the dot product between the query and key
vectors, normalizes the attention scores using SoftMax, and modulates the value vectors to
provide enhanced output representation. A study was conducted by Cordonnier et al. [29]
to investigate the link between self-attention and convolution operations. Their findings
demonstrated that when endowed with a large number of characteristics, self-attention
emerges as a highly flexible and versatile mechanism capable of extracting both local and
global properties. This shows that self-attention is more versatile and adaptable than typical
convolution procedures.

The abstract level ViT network diagram can be seen in Figure 1 and is based on the
following main components of the ViT model.

Patch Embedding: In ViT, the input image is divided into fixed-size non-overlapping
patches. Each patch is linearly projected to an embedding space using a learned linear
transformation represented by the matrix. This step transforms the 2D spatial information
of the image into a sequence of embeddings.

Positional Embedding: Since the transformer architecture does not inherently under-
stand the spatial arrangement of the patches, positional information needs to be injected.
Positional embeddings are added to the patch embeddings to provide information about
their spatial positions within the image.

Transformer Encoder: The positional embeddings (E_POS) are passed through a
transformer encoder. The encoder consists of multiple layers, and each layer contains
self-attention mechanisms and feedforward neural networks. The self-attention mechanism
allows each patch to attend to other patches, capturing global relationships in the image.
The feedforward neural networks further process the attended representations. The output
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of the encoder is a set of contextualized embeddings for each patch, which captures both
local and global image information.
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Classification Head: The final contextualized embeddings from the transformer en-
coder are used for downstream tasks such as image classification. For classification tasks,
the contextualized embeddings can be processed in different ways. One common approach
is to take the average of all embeddings or a specific token’s embedding (e.g., a classification
token) and pass it through one or more fully connected layers to make class predictions.

3.3. Hyper-Parameters for ViT Pretrained Model

In this research study, the initial images are preprocessed and resized to 224 × 224 that
further separated into patches of size 16 × 16 pixels. The technique of reducing the input
image into smaller fixed-size patches comprises splitting the image into 16-pixel-wide and
16-pixel-tall pieces.

The model used in this work was trained on a large data set known as ImageNet-
21k. This data set, which contains approximately 14 million photos classified into 21,841
different classes, is specifically tailored for large-scale image classification tasks. The
model’s structure consists of 12 transformer layers, each with 768 hidden components. The
overall capacity of the model is reflected in its 85.8 million trainable parameters which is
helpful in the learning process. The parameter values and configurations employed in the
ViT model can be seen in Table 2.

Table 2. ViT Configurations.

Parameters Values

Encoder and Pooling Layers Dimensionality 768

Transformer Encoder Hidden Layers 12

Feed-Forward Layer Dimensionality 3072

Hidden Layers Activation Gelu

Hidden Layer Dropout 0.1

Image Size 224 × 224

Channels 3

Patches 16 × 16

Balanced True
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Figure 2 presents the abstract-level diagram illustrating the proposed methodology.
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4. Experiments Results & Discussion

This section provides a comprehensive discussion of the evaluation measures, experi-
mental details, and the results obtained through the proposed methodology.

4.1. Evaluation Metrics

Metrics for evaluating the performance of machine learning and deep learning models
are essential. These measures are crucial in the fields of machine learning, deep learning,
and statistical research. In this study, our attention was directed towards six essential
assessment metrics to evaluate the effectiveness of our proposed model.

• Accuracy: The metric of accuracy assesses the comprehensive correctness of the
model’s predictions by calculating the ratio of accurately classified instances to the
total samples. However, in scenarios involving imbalanced data sets or situations
where distinct types of errors hold differing degrees of significance, relying solely on
accuracy might not suffice for a thorough evaluation.
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• Recall: The model’s competence in precisely identifying positive samples from the
pool of actual positives is measured using recall, which is alternatively known as
sensitivity or the true positive rate. This metric is derived by calculating the ratio
of true positives to the sum of true positives and false negatives. Essentially, recall
provides an assessment of the thoroughness of positive predictions.
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• F1 Score: The F1 score, determined by the harmonic mean of precision and recall,
serves as a singular metric that strikes a balance between these two measures. This
becomes particularly advantageous in scenarios where there is an unequal distribution
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among classes or when there exists an equal emphasis on both types of errors. Ranging
between 0 and 1, the F1 score attains its peak performance at 1.
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4.2. Results & Discussion

We have trained the ViT model with different aspects of the data set. The classification
report regarding the different aspects can be seen in the below sections.

4.2.1. Experiment 1: Results for the Kaggle Data Set

In experiment 1, we have initially considered the Kaggle [24] data set to train the ViT
model from this data set due to the limited resources we have considered the 50K real
images as well as 50K GAN-generated images that were labeled as fake images. From the
total data set, we have used 20% data for testing purposes, and the remaining data are
used for training purposes. We have trained the model for five epochs with a learning
rate of 2 × 10−5. The training loss start from 0.12000 and ended up at 0.00001 for the last
epochs whereas the validation loss starts from 0.03010 and ended up on 0.00010 at the last
epoch. We have achieved 100% accuracy with the fine-tuned ViT model; further, in Table 3,
class-wise precision, recall, and f1 scores can be seen for 20K test images.

Table 3. ViT performance as Class Wise for Experiment 1.

Class Name Precision Recall F1 Support

Real 1.0000 1.0000 1.0000 10,000

Fake 1.0000 1.0000 1.0000 10,000

Accuracy 1.0000 20,000

Macro Avg 1.0000 1.0000 1.0000 20,000

Weighted Avg 1.0000 1.0000 1.0000 20,000

To ensure the resilience of the fine-tuned model, we incorporated a website, accessible
at https://thispersondoesnotexist.com/ (accessed on 1 July 2023). This website is based
on the ‘StyleGAN’ algorithm [30] and generates distinct human faces with each visit. The
samples extracted from this website are presented in Table 4. Through extensive testing
using 50 images, our refined model consistently and accurately identified all of them as
synthetic or “fake”.

Table 4. StyleGAN [31] Testing Samples and Predicted Label.
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4.2.2. Experiment 2: Real (Kaggle) + Fake (StyleGAN-Based) Data Set 
To broaden the scope of our experiments, we acquired a substantial data set compris-

ing 9451 images obtained from an online source [31], encompassing both fake/GAN im-
ages and authentic images. In addition, we collected an equal number of 9451 real images 
from the Kaggle source [24]. To address potential overfitting, we mitigated the issue of 
class imbalance by training the model on a balanced data set. To evaluate the model’s 
performance, we allocated 33% of the data for testing purposes. 

Utilizing the balanced approach, we trained the model on 6311 fake images and 6353 
real images. Subsequently, we assessed its accuracy using a subset of 3140 fake images 
and 3098 real images. Remarkably, our model achieved an accuracy of 99.95%, as illus-
trated in Table 5. 

Table 5. ViT Class Wise performance for Experiment 2. 

Class Name Precision Recall F1 Support 
Real 1.0000 0.9990 0.9995 3140 
Fake 0.9990 1.0000 0.9995 3098 

Accuracy   0.9995 6238 
Macro Avg 0.9995 0.9995 0.9995 6238 

Weighted Avg 0.9995 0.9995 0.9995 6238 

4.2.3. Experiment 3: Real (Kaggle) + Fake (Kaggle + StyleGAN-Based) 
In order to demonstrate the effectiveness of the ViT model, we expanded our data set 

to include 30,000 real images sourced from Kaggle. For the fake images, we collected 
15,000 from Kaggle and another 15,000 from the website https://thispersondoesnotex-
ist.com (1 July 2023). It is important to note that this time the fake class consisted of images 
from two distinct sources. 

To ensure the model’s generalization capability, we trained it using the same param-
eters. We reserved 20% of the data, amounting to 12,000 images, for evaluation purposes. 
Impressively, our model achieved an accuracy of 99.66%, as shown in Table 6. During 
training, the initial training loss was 0.11620, gradually decreasing to 0.00000 by the last 
epoch. Similarly, the validation loss began at 0.02460 and reached 0.01270 by the final 
epoch. These results indicate the model’s exceptional performance and strong conver-
gence. 

Table 6. ViT Class Wise performance for Experiment 3. 

Class Name Precision Recall F1 Support 
Real 0.9951 0.9980 0.9965 5917 
Fake 0.9980 0.9952 0.9966 6083 

Accuracy    0.9966 12,000 
Macro Avg 0.9966 0.9966 0.9966 12,000 

Weighted Avg 0.9966 0.9966 0.9966 12,000 
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4.2.2. Experiment 2: Real (Kaggle) + Fake (StyleGAN-Based) Data Set

To broaden the scope of our experiments, we acquired a substantial data set comprising
9451 images obtained from an online source [31], encompassing both fake/GAN images
and authentic images. In addition, we collected an equal number of 9451 real images
from the Kaggle source [24]. To address potential overfitting, we mitigated the issue of
class imbalance by training the model on a balanced data set. To evaluate the model’s
performance, we allocated 33% of the data for testing purposes.

Utilizing the balanced approach, we trained the model on 6311 fake images and
6353 real images. Subsequently, we assessed its accuracy using a subset of 3140 fake images

https://thispersondoesnotexist.com/
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and 3098 real images. Remarkably, our model achieved an accuracy of 99.95%, as illustrated
in Table 5.

Table 5. ViT Class Wise performance for Experiment 2.

Class Name Precision Recall F1 Support

Real 1.0000 0.9990 0.9995 3140

Fake 0.9990 1.0000 0.9995 3098

Accuracy 0.9995 6238

Macro Avg 0.9995 0.9995 0.9995 6238

Weighted Avg 0.9995 0.9995 0.9995 6238

4.2.3. Experiment 3: Real (Kaggle) + Fake (Kaggle + StyleGAN-Based)

In order to demonstrate the effectiveness of the ViT model, we expanded our data
set to include 30,000 real images sourced from Kaggle. For the fake images, we collected
15,000 from Kaggle and another 15,000 from the website https://thispersondoesnotexist.
com (1 July 2023). It is important to note that this time the fake class consisted of images
from two distinct sources.

To ensure the model’s generalization capability, we trained it using the same parame-
ters. We reserved 20% of the data, amounting to 12,000 images, for evaluation purposes.
Impressively, our model achieved an accuracy of 99.66%, as shown in Table 6. During
training, the initial training loss was 0.11620, gradually decreasing to 0.00000 by the last
epoch. Similarly, the validation loss began at 0.02460 and reached 0.01270 by the final epoch.
These results indicate the model’s exceptional performance and strong convergence.

Table 6. ViT Class Wise performance for Experiment 3.

Class Name Precision Recall F1 Support

Real 0.9951 0.9980 0.9965 5917

Fake 0.9980 0.9952 0.9966 6083

Accuracy 0.9966 12,000

Macro Avg 0.9966 0.9966 0.9966 12,000

Weighted Avg 0.9966 0.9966 0.9966 12,000

4.2.4. Model Robustness

To assess the robustness of our proposed fine-tuned ViT model, we conducted tests
using filtered images. For this purpose, we utilized Snapchat [32], a widely used multimedia
messaging application known for its diverse range of filters. These filters can be applied to
images, enabling users to enhance or modify their appearance.

We gathered a data set comprising 24 images from Snapchat. These images depicted
three distinct individuals and are presented in Table 7. Remarkably, our fine-tuned ViT
model achieved a perfect accuracy of 100% when tested on these Snapchat filtered images.
This result underscores the model’s effectiveness in accurately identifying and classifying
faces even in the presence of various filters applied to the images.

Table 7. Snapchat Images for Testing.
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StyleGAN 90.65% 

Proposed (Experiment 1) Vision Transformer 20,000 Test Images一(Kaggle) 

Accuracy 100.0% 
Precision 100.0% 

Recall 100.0% 
F1 100.0% 

Proposed (Experiment 2) Vision Transformer 
6238 Test Images一(Real Images from 

Kaggle and Fake from StyleGAN 
Based website) 

Accuracy 99.95% 
Precision 99.95% 

Recall 99.95% 
F1 99.95% 

Proposed (Experiment 3) Vision Transformer 
12,000 Test Images一(Real Images 
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Accuracy 99.96% 
Precision 99.96% 

Recall 99.96% 
F1 99.96% 

4.2.5. Theoretical and Practical Implications 
From a theoretical standpoint, the study contributes to the field of deepfake detection 

by proposing the use of Vision Transformer Networks. This introduces a novel approach 
to tackle the escalating issue of deceptive media in the digital age. 
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The method put forward demonstrates superior performance when compared to state-
of-the-art techniques, as indicated by the performance analysis presented in Table 8 of the
study, while direct comparison proves challenging due to the inherent data set variations.

Table 8. Comparison between the proposed study and State-of-the-Art studies.

Authors Method Data Set Evaluation Metric Results

(Gandhi et al., 2020)
[33]

ResNet Pretrained
Architecture 10,000 Images Accuracy Test 94.75%

(Hu et al., 2021)
[34]

Corneal Specular
Highlights 1000 Images Accuracy Test 90.48%

(Yousaf et al., 2022)
[35] Two-Stream CNN 11,982 Images Accuracy Test Accuracy for

StyleGAN 90.65%

Proposed (Experiment 1) Vision Transformer
20,000 Test Images

(Kaggle)

Accuracy 100.0%
Precision 100.0%

Recall 100.0%
F1 100.0%

Proposed (Experiment 2) Vision Transformer

6238 Test Images
(Real Images from Kaggle
and Fake from StyleGAN

Based website)

Accuracy 99.95%
Precision 99.95%

Recall 99.95%
F1 99.95%

Proposed (Experiment 3) Vision Transformer

12,000 Test Images
(Real Images from Kaggle
and Fake from (Kaggle +

StyleGAN Based website))

Accuracy 99.96%
Precision 99.96%

Recall 99.96%
F1 99.96%

4.2.5. Theoretical and Practical Implications

From a theoretical standpoint, the study contributes to the field of deepfake detection
by proposing the use of Vision Transformer Networks. This introduces a novel approach to
tackle the escalating issue of deceptive media in the digital age.

The study’s findings have several practical implications. First, the implementation of
Vision Transformer Networks enhances the accuracy and reliability of deepfake detection
algorithms. This empowers individuals and organizations to identify and mitigate the
harmful effects of manipulated media, such as misinformation, fraud, and privacy breaches.

Furthermore, the study’s outcomes hold promise for the development of more robust
and efficient deepfake detection systems. This has wide-ranging applications, including
the protection of individuals from reputation damage, the preservation of trust in digital
content, and the prevention of cybercrimes.

Additionally, the research sheds light on the advancements and limitations of Vision
Transformer Networks, i.e., huge data required, providing valuable insights for further
refinement and optimization of these models. This contributes to the ongoing efforts in the
field of computer vision and artificial intelligence, aiding in the continuous evolution of
technologies to combat emerging threats posed by deepfakes.

5. Conclusions

Deepfaking has emerged as a novel method extensively utilized for propagating
disinformation. Although not all deepfake content is inherently malicious, it is crucial to
identify and address such creations, as certain instances pose a significant threat to society.
The primary objective of this study was to assess the efficacy of ViT in detecting deepfake
images. The utilization of global feature mapping and self-attention mechanisms inherent
in Vision Transformer has proven to be highly effective. Through careful evaluation across
multiple data sets, we have achieved exceptional accuracy rates ranging from 99.5% to
100% when considering three distinct perspectives. Additionally, within the scope of this
investigation, we conducted an evaluation of filtered images from Snapchat. Remarkably,
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we achieved a perfect accuracy rate of 100% in accurately identifying and classifying such
images. In future, our research endeavors aim to broaden the scope of our current work
by incorporating additional data sets that have been specifically curated and released for
deepfake research (i.e., diffusion-based deepfake image detection). This expansion is crucial
to enhance the diversity, accuracy, and overall robustness of our methods and findings.
Another research direction will be exploring the deepfake problem as a multiclass task.
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