4,795 research outputs found

    Are f(R) dark energy models cosmologically viable ?

    Full text link
    All f(R)f(R) modified gravity theories are conformally identical to models of quintessence in which matter is coupled to dark energy with a strong coupling. This coupling induces a cosmological evolution radically different from standard cosmology. We find that in all f(R)f(R) theories that behave as a power of RR at large or small RR (which include most of those proposed so far in the literature) the scale factor during the matter phase grows as t1/2t^{1/2} instead of the standard law t2/3t^{2/3}. This behaviour is grossly inconsistent with cosmological observations (e.g. WMAP), thereby ruling out these models even if they pass the supernovae test and can escape the local gravity constraints.Comment: 4 pages; v2: revised figure and minor changes to match version accepted on Phys. Rev. Let

    Applications of Bayesian model selection to cosmological parameters

    Get PDF
    Bayesian model selection is a tool to decide whether the introduction of a new parameter is warranted by data. I argue that the usual sampling statistic significance tests for a null hypothesis can be misleading, since they do not take into account the information gained through the data, when updating the prior distribution to the posterior. On the contrary, Bayesian model selection offers a quantitative implementation of Occam's razor. I introduce the Savage-Dickey density ratio, a computationally quick method to determine the Bayes factor of two nested models and hence perform model selection. As an illustration, I consider three key parameters for our understanding of the cosmological concordance model. By using WMAP 3-year data complemented by other cosmological measurements, I show that a non-scale invariant spectral index of perturbations is favoured for any sensible choice of prior. It is also found that a flat Universe is favoured with odds of 29:1 over non--flat models, and that there is strong evidence against a CDM isocurvature component to the initial conditions which is totally (anti)correlated with the adiabatic mode (odds of about 2000:1), but that this is strongly dependent on the prior adopted. These results are contrasted with the analysis of WMAP 1-year data, which were not informative enough to allow a conclusion as to the status of the spectral index. In a companion paper, a new technique to forecast the Bayes factor of a future observation is presented.Comment: v2 to v3: minor changes, matches accepted version by MNRAS. v1 to v2: major revision. New results using WMAP 3-yr data, scale-invariant spectrum now disfavoured with moderate evidence. New benchmark test for the accuracy of the method. Bayes factor forecast methodology (PPOD, formerly called ExPO) expanded and now presented in a companion paper (astro-ph/0703063

    Accretion of non-minimally coupled generalized Chaplygin gas into black holes

    Full text link
    The mass evolution of Schwarzschild black holes by the absorption of scalar fields is investigated in the scenario of the generalized Chaplygin gas (GCG). The GCG works as a unification picture of dark matter plus dark energy that naturally accelerates the expansion of the Universe. Through elements of the quasi-stationary approach, we consider the mass evolution of Schwarzschild black holes accreted by non-minimally coupled cosmological scalar fields reproducing the dynamics of the GCG. As a scalar field non-minimally coupled to the metrics, such an exotic content has been interconnected with accreting black holes. The black hole increasing masses by the absorption of the gas reflects some consistence of the accretion mechanism with the hypothesis of the primordial origin of supermassive black holes. Our results effectively show that the non-minimal coupling with the GCG dark sector accelerates the increasing of black hole masses. Meanwhile some exotic features can also be depicted for specific ranges of the non-minimal coupling in which the GCG dynamics is substantially modified.Comment: 13 pages, 03 figure

    Dark Matter and Dark Energy

    Full text link
    I briefly review our current understanding of dark matter and dark energy. The first part of this paper focusses on issues pertaining to dark matter including observational evidence for its existence, current constraints and the `abundance of substructure' and `cuspy core' issues which arise in CDM. I also briefly describe MOND. The second part of this review focusses on dark energy. In this part I discuss the significance of the cosmological constant problem which leads to a predicted value of the cosmological constant which is almost 1012310^{123} times larger than the observed value \la/8\pi G \simeq 10^{-47}GeV4^4. Setting \la to this small value ensures that the acceleration of the universe is a fairly recent phenomenon giving rise to the `cosmic coincidence' conundrum according to which we live during a special epoch when the density in matter and \la are almost equal. Anthropic arguments are briefly discussed but more emphasis is placed upon dynamical dark energy models in which the equation of state is time dependent. These include Quintessence, Braneworld models, Chaplygin gas and Phantom energy. Model independent methods to determine the cosmic equation of state and the Statefinder diagnostic are also discussed. The Statefinder has the attractive property \atridot/a H^3 = 1 for LCDM, which is helpful for differentiating between LCDM and rival dark energy models. The review ends with a brief discussion of the fate of the universe in dark energy models.Comment: 40 pages, 11 figures, Lectures presented at the Second Aegean Summer School on the Early Universe, Syros, Greece, September 2003, New References added Final version to appear in the Proceeding

    Cosmological model with interactions in the dark sector

    Get PDF
    A cosmological model is proposed for the current Universe consisted of non-interacting baryonic matter and interacting dark components. The dark energy and dark matter are coupled through their effective barotropic indexes, which are considered as functions of the ratio between their energy densities. It is investigated two cases where the ratio is asymptotically stable and their parameters are adjusted by considering best fits to Hubble function data. It is shown that the deceleration parameter, the densities parameters, and the luminosity distance have the correct behavior which is expected for a viable present scenario of the Universe.Comment: 6 pages, 8 figure

    Gauss-Bonnet lagrangian G ln G and cosmological exact solutions

    Full text link
    For the lagrangian L = G ln G where G is the Gauss-Bonnet curvature scalar we deduce the field equation and solve it in closed form for 3-flat Friedman models using a statefinder parametrization. Further we show, that among all lagrangians F(G) this L is the only one not having the form G^r with a real constant r but possessing a scale-invariant field equation. This turns out to be one of its analogies to f(R)-theories in 2-dimensional space-time. In the appendix, we systematically list several formulas for the decomposition of the Riemann tensor in arbitrary dimensions n, which are applied in the main deduction for n=4.Comment: 18 pages, amended version, accepted by Phys. Rev.

    Linear and non-linear perturbations in dark energy models

    Full text link
    I review the linear and second-order perturbation theory in dark energy models with explicit interaction to matter in view of applications to N-body simulations and non-linear phenomena. Several new or generalized results are obtained: the general equations for the linear perturbation growth; an analytical expression for the bias induced by a species-dependent interaction; the Yukawa correction to the gravitational potential due to dark energy interaction; the second-order perturbation equations in coupled dark energy and their Newtonian limit. I also show that a density-dependent effective dark energy mass arises if the dark energy coupling is varying.Comment: 12 pages, submitted to Phys. Rev; v2: added a ref. and corrected a typ

    Are the school prevention programmes - aimed at de-normalizing smoking among youths - beneficial in the long term? An example from the Smoke Free Class Competition in Italy

    Get PDF
    Tobacco smoking by young people is of great concern because it usually leads to regular smoking, nicotine addiction and quitting difficulties. Young people "hooked" by tobacco maintain the profits of the tobacco industry by replacing smokers who quit or die. If new generations could be tobacco-free, as supported by tobacco endgame strategies, the tobacco epidemic could end within decades. Smoking prevention programmes for teens are offered by schools with the aim to prevent or delay smoking onset. Among these, the Smoke Free Class Competition (SFC) was widely implemented in Europe. Its effectiveness yielded conflicting results, but it was only evaluated at short/medium term (6 - 18 months). The aim of this study is to evaluate its effectiveness after a longer follow-up (3 to 5 years) in order to allow enough time for the maturing of the students and the internalization of the experience and its contents. Fifteen classes were randomly sampled from two Italian high schools of Bologna province that regularly offered the SFC to first year students; 382 students (174 participating in the SFC and 208 controls) were retrospectively followed-up and provided their "smoking histories". At the end of their last year of school (after 5 years from the SFC), the percentage of students who stated that they were regular smokers was lower among the SFC students than in controls: 13.5% vs 32.9% (p=0.03). From the students' "smoking histories", statistically significant protective ORs were observed for SFC students at the end of 1st and 5th year: 0.42 (95% CI 0.19-0.93) and 0.32 (95% CI 0.11-0.91) respectively. Absence of smokers in the family was also a strongly statistically significant factor associated with being a non-smoker student. These results suggest that SFC may have a positive impact on lowering the prevalence of smoking in the long term (5 years)
    • …
    corecore