1,786 research outputs found

    A combined thermodynamics and first principles study of the electronic, lattice and magnetic contributions to the magnetocaloric effect in La0.75Ca0.25MnO3

    Get PDF
    Manganites with the formula La1−x Ca x MnO3 for 0.2  <  x  <  0.5 undergo a magnetic field driven transition from a paramagnetic to ferromagnetic state, which is accompanied by changes in the lattice and electronic structure. An isotropic expansion of the La0.75Ca0.25MnO3 cell at the phase transition has been observed experimentally. It is expected that there will be a large entropy change at the transition due to its first order nature. Doped lanthanum manganite (LMO) is therefore of interest as the active component in a magnetocaloric cooling device. However, the maximum obtained value for the entropy change in Ca-doped manganites merely reaches a moderate value in the field of a permanent magnet. The present theoretical work aims to shed light on this discrepancy. A combination of finite temperature statistical mechanics and first principles theory is applied to determine individual contributions to the total entropy change of the system by treating the electronic, lattice and magnetic components independently. Hybrid-exchange density functional (B3LYP) calculations and Monte Carlo simulations are performed for La0.75Ca0.25MnO3. Through the analysis of individual entropy contributions, it is found that the electronic and lattice entropy changes oppose the magnetic entropy change. The results highlighted in the present work demonstrate how the electronic and vibrational entropy contributions can have a deleterious effect on the total entropy change and thus the potential cooling power of doped LMO in a magnetocaloric device

    Chromosome phylogeny of the subfamily Pitheciinae (Platyrrhini, Primates) by classic cytogenetics and chromosome painting

    Get PDF
    Background: The New World monkey (Platyrrhini) subfamily Pitheciinae is represented by the genera Pithecia, Chiropotes and Cacajao. In this work we studied the karyotypes of Pithecia irrorata (2n = 48) and Cacajao calvus rubicundus (2n = 45 in males and 2n = 46 in females) by G-and C-banding, NOR staining and chromosome painting using human and Saguinus oedipus whole chromosome probes. The karyotypes of both species were compared with each other and with Chiropotes utahicki (2n = 54) from the literature. Results: Our results show that members of the Pitheciinae have conserved several chromosome forms found in the inferred ancestral Platyrrhini karyotype (associations of human homologous segments 3a/21, 5/7a, 2b/16b, 8a/18, 14/15a and 10a/16a). Further, the monophyly of this subfamily is supported by three chromosomal synapomorphies (2a/10b, an acrocentric 15/14 and an acrocentric human 19 homolog). In addition, each species presents several autapomorphies. From this data set we established a chromosomal phylogeny of Pitheciinae, resulting in a single most parsimonious tree. Conclusions: In our chromosomal phylogeny, the genus Pithecia occurred in a more basal position close to the inferred ancestor of Platyrrhini, while C. c. rubicundus and C. utahicki are closely related and are linked by exclusive synapomorphies

    Amygdala Engagement in Response to Subthreshold Presentations of Anxious Face Stimuli in Adults with Autism Spectrum Disorders: Preliminary Insights

    Get PDF
    Current theoretical models of autism spectrum disorders (ASD) have proposed that impairments in the processing of social/emotional information may be linked to amygdala dysfunction. However, the extent to which amygdala functions are compromised in ASD has become a topic of debate in recent years. In a jittered functional magnetic resonance imaging study, sub-threshold presentations of anxious faces permitted an examination of amygdala recruitment in 12 high functioning adult males with ASD and 12 matched controls. We found heightened neural activation of the amygdala in both high functioning adults with ASD and matched controls. Neither the intensity nor the time-course of amygdala activation differed between the groups. However, the adults with ASD showed significantly lower levels of fusiform activation during the trials compared to controls. Our findings suggest that in ASD, the transmission of socially salient information along sub-cortical pathways is intact: and yet the signaling of this information to structures downstream may be impoverished, and the pathways that facilitate subsequent processing deficient

    Hierarchical information clustering by means of topologically embedded graphs

    Get PDF
    We introduce a graph-theoretic approach to extract clusters and hierarchies in complex data-sets in an unsupervised and deterministic manner, without the use of any prior information. This is achieved by building topologically embedded networks containing the subset of most significant links and analyzing the network structure. For a planar embedding, this method provides both the intra-cluster hierarchy, which describes the way clusters are composed, and the inter-cluster hierarchy which describes how clusters gather together. We discuss performance, robustness and reliability of this method by first investigating several artificial data-sets, finding that it can outperform significantly other established approaches. Then we show that our method can successfully differentiate meaningful clusters and hierarchies in a variety of real data-sets. In particular, we find that the application to gene expression patterns of lymphoma samples uncovers biologically significant groups of genes which play key-roles in diagnosis, prognosis and treatment of some of the most relevant human lymphoid malignancies.Comment: 33 Pages, 18 Figures, 5 Table

    Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle

    Get PDF
    Background Domestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals. Results Phylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle. Conclusions This work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought
    • …
    corecore