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Abstract

Manganites with the formula La1−xCaxMnO3 for 0.2 < x < 0.5 undergo a magnetic field driven

transition from a paramagnetic to ferromagnetic state, which is accompanied by changes in the

lattice and electronic structure. An isotropic expansion of the La0.75Ca0.25MnO3 cell at the phase

transition has been observed experimentally. It is therefore expected that there will be a large

entropy change at the transition due to the first order nature. However, the maximum obtained

value for the entropy change in Ca-doped manganites merely reaches a moderate value in the

field of a permanent magnet. The present theoretical work aims to shed light on this discrepancy.

A combination of finite temperature statistical mechanics and first principles theory is applied

to determine individual contributions to the total entropy change of the system by treating the

electronic, lattice and magnetic components independently. Hybrid-exchange density functional

(B3LYP) calculations and Monte Carlo simulations are performed for La0.75Ca0.25MnO3. Through

the analysis of individual entropy contributions, it is identified that the electronic and lattice

entropy changes oppose the magnetic entropy change. The results highlighted in the present work

demonstrate how the electronic and vibrational terms can have a deleterious effect on the total

entropy change.
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I. INTRODUCTION

The Magnetocaloric Effect (MCE) [1–5] is defined as the change in temperature of a

magnetically ordered material, upon the application or removal of an external magnetic

field under adiabatic conditions. The effect was first discovered, in iron, by Emil Warburg

in 1881 [6]. In the past two decades, there has been a surge of interest in magnetocaloric

materials that could potentially be used in cooling devices, such as heat pumps and magnetic

refrigerators [7–9]. More recently, manganites, an economically viable class of materials, have

attracted much attention due to their remarkable structural and electronic properties, which

are strongly dependent on the doping concentration as well as external variables, such as

temperature, pressure, and electric or magnetic fields [4].

Manganites are perovskites, which have the general formula R1−xAxMnO3, where R is a

trivalent rare earth metal and A is a divalent alkaline earth element. Such perovskites exhibit

cross-coupling between the spin, charge, orbital and lattice degrees of freedoms [10–12]. This

strong interplay often lead to non-trivial material responses to external stimuli. However,

due to the effects of strong electron correlation, a complete microscopic understanding of

the physics underlying the properties of manganites has not yet been obtained.

Since the discovery of the Collosal Magnetoresistance (CMR) [13–15], experimental stud-

ies on manganites doped with divalent alkaline earth elements, such as Ca, Ba and Sr, have

been the subject of intense study. An important practical feature of manganites is that the

average radii of cations at different sites can affect the ground state [2]. The structure of

manganites, in particular, is very robust against chemical modifications at the A-site. Fur-

thermore, doping at the R-site is of interest since the exchange interaction could be modified.

This provides a mechanism for tuning the MCE and the Curie temperature TC, where the

latter defines the operating temperature of the cooling device.

The La1−xCaxMnO3 series undergoes a field driven transition from a paramagnetic in-

sulating (PM-I) to ferromagnetic metallic (FM-M) state for 0.2 < x < 0.5, which is ac-

companied by changes in the lattice and electronic structure. As determined by Radaelli

et.al., from high-resolution synchrotron X-ray powder diffraction data, an isotropic expan-

sion of the La0.75Ca0.25MnO3 cell occurs at the transition without affecting the orthorhombic

symmetry [16]. It is therefore expected that the isothermal entropy change ∆Siso for this

particular composition would be considerable, since the electronic and lattice contributions
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may play a significant role in enhancing the MCE in addition to the expected contribu-

tion from spin disorder [16, 17]. Despite many experimental efforts to enhance the ∆Siso

in La1−xCaxMnO3 manganites, particularly for 0.2 < x < 0.5, the MCE reaches a modest

value in the field of a permanent magnet [4, 14, 18–27]. For example, the maximum obtained

value for La0.75Ca0.25MnO3 is 4.70Jkg−1K−1 [24] for an applied external magnetic field of

1.5T.

The Gibbs free energy is expressed as [28]:

G(T, P,H) = Uvib + Uelas + Uelec + Uex −MH + PV − TS (1)

where the first four terms correspond to the internal energy (vibrational, elastic, electronic

and magnetic, respectively). In the current study we make the fundamental assumption that

the entropy change can be expressed as,

∆Stotal = ∆Svib +∆Selas +∆Selec +∆Smag (2)

where ∆Svib, ∆Selas, ∆Selec and ∆Smag are the vibrational, elastic, electronic and mag-

netic contributions, respectively. Equ. 2 corresponds to the isothermal entropy change ∆Siso

when a magnetic field is applied, which can also be determined through integration of the

thermodynamic Maxwell relation. This assumption neglects the explicit interactions be-

tween lattice, spin and electronic degrees of freedom. We test the assumption of independent

contributions for a simple model with long translational order.

The paper is organized as follows: in Section II the computational methodology is pro-

vided and the results are presented in Section III. The discussion begins with the electronic

entropy calculation for La0.75Ca0.25MnO3, followed by an analysis of the lattice component,

which includes both the elastic and vibrational contributions. The discussion then focuses

on a Monte Carlo study of the magnetic entropy and magnetization dynamics of the doped

manganite composition. Conclusions are drawn in Section IV.

II. METHODOLOGY

All calculations have been performed using CRYSTAL09 [29] which is based on the ex-

pansion of the crystalline orbitals as a linear combination of a local basis set (BS) consisting

of atom centered Gaussian orbitals.
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The Mn, O and Ca ions are described by a triple valence all-electron BS: an 86-411d(41)

contraction (one s, four sp, and two d shells), an 8-411d(1) contraction (one s, three sp,

and one d shells) and an 8-65111(21) contraction (one s, three sp, and two d shells), respec-

tively; the most diffuse sp(d) exponents are αMn=0.4986(0.249), αO= 0.1843(0.6) and αCa=

0.295(0.2891) Bohr−2. The La basis set includes a relativistic pseudopotential to describe

the core electrons, while the valence part consists of a 411p(411)d(311) contraction scheme

(with three s, three p and three d shells); the most diffuse exponent is αLa=0.15 Bohr−2 for

each s, p and d [30].

Electron exchange and correlation are approximated using the B3LYP hybrid exchange

functional, which is expected to be more reliable than LDA or GGA approaches for transition

metal oxides [31–34]. The exchange and correlation potentials and energy functional are

integrated numerically on an atom centered grid of points. The integration over radial and

angular coordinates is performed using Gauss-Legendre and Lebedev schemes, respectively.

A pruned grid consisting of 99 radial points and 5 sub-intervals with (146, 302, 590, 1454,

590) angular points has been used for all calculations (the XXLGRID option implemented

in CRYSTAL09 [29]). This grid converges the integrated charge density to an accuracy

of about ×10−6 electrons per unit cell. The Coulomb and exchange series are summed

directly and truncated using overlap criteria with thresholds of 10−7, 10−7, 10−7, 10−7 and

10−14 as described previously [29, 35]. Reciprocal space sampling was performed on a Pack-

Monkhorst net with a shrinking factor IS=8, which defines 75 symmetry unique k-points in

the Brillouin zone of the primitive cell. The self consistent field procedure was converged to

a tolerance in the total energy of ∆E = 1 · 10−7Eh per unit cell.

The cell parameters and the internal coordinates have been determined by minimization of

the total energy within an iterative procedure based on the total energy gradient calculated

analytically with respect to the cell parameters and nuclear coordinates. Convergence was

determined from the root-mean-square (rms) and the absolute value of the largest component

of the forces. The thresholds for the maximum and the rms forces (the maximum and the

rms atomic displacements) have been set to 0.00045 and 0.00030 (0.00180 and 0.0012) in

atomic units. Geometry optimization was terminated when all four conditions were satisfied

simultaneously.

The FM-PM phase transition has been investigated by mapping the first principles ener-

gies to the 3D Ising model in a Monte Carlo approach. A simple cubic lattice with periodic
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boundary conditions is considered and it is assumed that interactions occur only between

nearest neighbouring spin states. The Ising Hamiltonian, Ĥmag is defined as:

Ĥmag = −

1

2

∑

〈i,j〉

JijSi
zSj

z
−

∑

i

HextSi
z (3)

where Hext is an external magnetic field, Jij is the exchange parameter and S is the spin

state, which can only take on the value -1 (spin down) or 1 (spin up). In the Ising model,

only the z component of the spin variable is considered.

Here the relevant thermodynamic parameters such as the magnetization dependence on

temperature and applied magnetic field, and corresponding MCE near TC are numerically

estimated via the random path sampling (RPS) Monte Carlo method [36]. The RPS method

allows a flat magnetization sampling histogram of magnetic configurations, by construction.

Energy and magnetization sampling is performed via local updates from +1 and -1 total

magnetization states. Prior to each sweep, a shuffled list of spin positions is generated. Spin

flips, where a spin in the +1 state is flipped with the probability of 1, are then performed

sequentially using this list. The configuration energy is determined via the local energy

difference due to a spin flip, as usually done in the Metropolis algorithm. From the obtained

joint density of states (JDos), the partition function is evaluated for each desired (H, T ) value

and therefore, the corresponding thermodynamic variables and their (H, T ) dependence.

This approach compares favourably to the use of the Metropolis algorithm in the context of

MCE studies, as critical slowing down effects near TC are avoided, and individual (H, T )-

dependent calculations are unnecessary, as the more time-consuming JDos evaluation is

independent of these extensive parameters.

III. RESULTS

A. Electronic entropy

The metal-insulator (M-I) transition results in a modification of the density of states at

the Fermi level, and strong evidence for this has been provided in a recent theoretical study

of La0.75Ca0.25MnO3 [37]. Thus, the electronic entropy for the M and I phases is expected to

differ significantly. The electronic structure determined for the M and I, from hybrid density

functional theory calculations [37], is used to compute the ∆Selec for La0.75Ca0.25MnO3. This
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contribution is computed using the finite temperature DFT approach [38], which allows one

to express the free energy in terms of the Fermi function,

fik = (1 + e
(ǫ

ik
−ǫF )

kbT )−1, (4)

Selectronic = 2

Nstates
∑

i,k

(fiklnfik + (1− fik)ln(1 − fik))ki,weight, (5)

where N is the number of (occupied and unoccupied) states, fik is the Fermi distribution

function and ki,weight is the ki point geometrical weight, respectively. The Fermi function

describes the probability of occupation at a certain temperature, which can be summed over

all the k-points in the Brillouin zone for each band to determine the occupation levels.

Temperature (K) ∆Selec (Jmol−1K−1)

10 0.01

100 0.19

224 0.45

TABLE I. The electronic entropy contribution ∆Selec to ∆S for the FM-M (LCMO at x=1/4) at

10K, 100K and 224K (TC=224K [20]), where Selec for the FM-I is considered to be zero.

The computed values of the electronic entropy, ∆Selec at 10K, 100K and 224K (TC) are

given in Table I. The values are positive, since Selec for the insulator is zero and the field-

driven transition is from an I to a M. Thus, as the temperature is increased from 10K to

224K, the ∆Selec increases.

B. Lattice entropy

1. Elastic contribution

The elastic contribution to the total entropy change has been calculated from the follow-

ing [28]:

∆Selas =
1

TC

B

2

(

∆V

V

)2

(6)
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where the value for the bulk elastic modulus B is taken to be 100GPa, which has been

determined from the ultrasonic properties of La0.67Ca0.33MnO3 [39]. The ∆V in this partic-

ular calculation corresponds to the difference in volume between the FM-M (244.8Å3) and

FM-I (245.1Å3) state from the DFT calculations, which is 0.3Å3 [37]. If the experimental TC

of 224K [18] is assumed, the ∆Selas is 1.81×10−4Jmol−1K−1. The elastic contribution to ∆S

is therefore considered to be a negligible term. If, however, we assume the ∆V /V ≈ 0.13%

determined from high-resolution synchrotron x-ray powder diffraction data [16], then the

∆Selas is 2.03×10−4Jmol−1K−1. Thus, the theoretical ∆Selas value is also negligibly small.

2. Vibrational contribution

In order to sample all the vibrational modes, the vibrational frequencies for an isotropic

(80 atom) supercell computed to determine the vibrational contribution Svib to ∆S in the

simple harmonic approximation. The mass-weighted Hessian (or dynamical) matrix [40]

is calculated by numerical evaluation of the first derivative of the analytical atomic gradi-

ents; the eigenvalues of the Hessian matrix correspond to the vibrational frequencies. The

vibrational entropy Svib has been calculated using the following,

Fvib = E0 +
1

2

∑

k,j

~ω + kBT
∑

k,j

ln [1− exp(−~ω/kBT )] (7)

Svib = −

∂Fvib

∂T
(8)

The Svib for the metallic and insulating state is given in Table II.

M/I Svib (Jmol−1K−1)

M 92.97

I 88.33

∆Selec 4 .64

TABLE II. The vibrational entropy for LCMO at x=1/4, in the FM-M and FM-I states for the

supercell. The ∆Svib is given in italics in units of Jmol−1K−1.

The Svib for the metal is higher than that of the insulator, as expected. This is attributed
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to phonon mode softening in the metallic state. Therefore, the contribution of ∆Svib is also

positive.

C. Magnetic entropy

The Ising Hamiltonian has been parameterised with the exchange coupling constant of

6.69meV calculated by averaging the apical (Jap) and equatorial (Jeq) determined from

hybrid-exchange DFT calculations for the FM-M state [37]. The Mn3.75+ is described by a

classical Ising spin, and the La, Ca and O ions are considered to be non-magnetic in the

MC simulations. The number of sites used in the simulation of a simple cubic (SC) lattice is

64, and the magnetization values were obtained by finding the minumum of the free energy

evaluated from the partition function at the desired (H, T ) values. The number of RPS

sweeps performed was 1011, leading to a free energy convergence better than 0.001% for T

near TC, under zero applied field. The magnetic entropy has then been computed as:

∆Smag(T,∆H) =

∫ H1

H0

(

∂M(T,H)

∂T

)

H

dH. (9)

The field-induced magnetic entropy change ∆Smag has been computed for ∆H of 1 and

2T and is shown in Fig. 1.

The predicted TC ∼ 398K has been determined from the peak in the ∆Smag curve. The

calculated TC, for the bulk crystal, is somewhat larger than the TC values of 177K and 224K

determined from magnetization measurements (defined as the maximum slope in dM/dT) of

La0.75Ca0.25MnO3 nanoparticles which varied in size [20]. The maxima of the field-induced

∆Smag occurs in the vicinity of TC and the determined values for ∆H of 1 and 2 T are -0.284

and -0.438 Jmol−1K−1, respectively. The computed values are significantly smaller than the

experimental ∆Siso calculated from magnetization measurements of La0.75Ca0.25MnO3 for

an applied magnetic field of 1.5T [18].

IV. CONCLUSIONS

A combined hybrid-exchange DFT and Monte Carlo approach has been used to quantify

the electronic, lattice and magnetic entropy contributions, to the entropy change ∆S across

9



FIG. 1. The magnetic entropy change ∆Smag due to an applied magnetic field of 1 and 2T as a

function of temperature calculated for J=6.69meV.

the PM-I to FM-M transition, in La0.75Ca0.25MnO3. It has been predicted that the electronic

and magnetic contributions are of a similar magnitude. Further, the computed electronic and

lattice entropy terms oppose the magnetic one. Thus, the electronic and vibrational terms

have a destructive effect on the total entropy change. The formalism adopted herein has

provided a valuable insight into the competing entropy components for La0.75Ca0.25MnO3.

The effects of more complex interactions such as spin-lattice and spin-orbit on the entropy

change should be considered. However, MC simulations of a magnetovolume coupled Ising

hamiltonian would require J values dependent on lattice volume which is computationally

expensive. The microscopic optimization of such interactions, to enhance the magnetocaloric

properties, may become a valuable tool in the search for new magnetocaloric materials.
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[1] J. R. Gómez, R. F. Garcia, A. D. M. Catoira, and M. R. Gómez, Renew. Sust. Energ. Rev.
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